
Efficient Estimation for High Similarities
using Odd Sketches

Michael Mitzenmacher
Harvard University

Cambridge, MA
michaelm@eecs.harvard.edu

Rasmus Pagh
IT University of Copenhagen

Copenhagen, Denmark
pagh@itu.dk

Ninh Pham
IT University of Copenhagen

Copenhagen, Denmark
ndap@itu.dk

ABSTRACT
Estimating set similarity is a central problem in many com-
puter applications. In this paper we introduce the Odd
Sketch, a compact binary sketch for estimating the Jac-
card similarity of two sets. The exclusive-or of two sketches
equals the sketch of the symmetric difference of the two
sets. This means that Odd Sketches provide a highly space-
efficient estimator for sets of high similarity, which is rele-
vant in applications such as web duplicate detection, collab-
orative filtering, and association rule learning. The method
extends to weighted Jaccard similarity, relevant e.g. for TF-
IDF vector comparison.

We present a theoretical analysis of the quality of estima-
tion to guarantee the reliability of Odd Sketch-based estima-
tors. Our experiments confirm this efficiency, and demon-
strate the efficiency of Odd Sketches in comparison with
b-bit minwise hashing schemes on association rule learning
and web duplicate detection tasks.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

Keywords
Set similarity; Minwise hashing; Bloom filters

1. INTRODUCTION
Estimating set similarities is a fundamental problem in

databases, machine learning, and information retrieval. Given
the two sets, S1 and S2, where

S1, S2 ⊆ Ω = {0, 1, . . . , D − 1},

a challenge is how to quickly compute their Jaccard similar-
ity coefficient J , a normalized measure of set similarity:

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2566486.2568017.

One can view large datasets of Web documents as collec-
tions of sets where sets and set elements correspond to doc-
uments and document words/shingles, respectively. Other
examples are datasets encountered in recommender systems,
where users and items can be viewed as sets and set ele-
ments. Hence, set similarity estimation is one of the key
research challenges in many application areas, such as web
duplicate detection [4, 6, 12, 18], collaborate filtering [1, 9],
and association rule learning [8].

Many applications of set similarity arise in large-scale
datasets. For instance, a search engine needs to crawl and
index billions of web-pages. Collaborative filtering engines
from sites such as Amazon or NetFlix have to deal with tens
of millions of users’ data. Performing similarity search over
such large-scale datasets is very time-consuming. If we are
willing to accept an estimate of J it turns out that it is pos-
sible to get by with much less computation and storage. But
how much better can it get? In this paper we address the
following question:

If each set S is summarized in a data structure D(S) of n
bits, how precise an estimate of J(S1, S2) is it possible to
make based on D(S1) and D(S2)?

Our main finding is that existing solutions, while highly ef-
ficient in general, are not optimal when J is close to 1. We
present a novel solution, the Odd Sketch, that yields im-
proved precision in the high similarity regime.

Although the setting where J is close to 1 has not often
been the primary focus when studying similarity measures,
there are many applications where this regime is important.
Consider a setting where the goal is not just to find a simi-
lar item, but to provide a short list and ranking of the most
similar items. For example, in the setting of document sim-
ilarity, in a sufficiently rich environment there may be hun-
dreds of documents quite similar to another document, and
the user wants to see the top ten. For such applications, we
require methods that are very accurate for high similarity
values J .

1.1 Minwise Hashing Schemes
Because minwise hashing is a building block of our ap-

proach, and because b-bit minwise hashing is our primary
alternative for comparison, we review both briefly.

1.1.1 Minwise Hashing
Minwise hashing is a powerful algorithmic technique to

estimate set similarities, originally proposed by Broder et
al. [4, 5]. It was used to detect and cluster similar docu-
ments in the early AltaVista search engine [6]. Since then,

xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

Jn bits

b-bit(S1)

S1

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

x
x

S2

xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx

b-bit(S2)

(1-J)n bits

xxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx

Different independent hash values

Same independent hash valuesxxxx
xxxx

Figure 1: Illustration of the b-bit minwise hashing
construction. Given a high Jaccard similarity J and
two minhashes S1, S2, we expect that |S1 ∩ S2| = Jn
(filled space) and |S1∆S2| = 2(1 − J)n (white space).
Due to the same independent hash values in the
filled space, the error of the b-bit scheme corre-
sponds to the error of the estimate of |S1∆S2|. Inac-
curacy in just a few bit positions in the white space
will yield a large relative error of the estimate of J.

the scheme has been applied successfully in a variety of ap-
plications, including similarity search [4, 5, 6], association
rule learning [8], compressing social networks [7], advertising
diversification [11], tracking Web spam [21], web duplicate
detection [15], large-scale learning [16], and more [1, 3, 14].

We now briefly review Broder’s minwise hashing scheme.
Given a random permutation π : Ω 7→ Ω, the Jaccard simi-
larity of S1 and S2 is

J(S1, S2) = Pr[min(π(S1)) = min(π(S2))].

Therefore we get an estimator for J by considering a se-
quence of permutations π1, . . . , πk and storing the annotated
minimum values (called “minhashes”).

S1 = {(i,min(πi(S1))) | i = 1, . . . , k},
S2 = {(i,min(πi(S2))) | i = 1, . . . , k}.

We estimate J by the fraction Ĵ = |S1∩S2|/k. This estima-
tor is unbiased, and by independence of the permutations it

can be shown that Var[Ĵ] = J(1−J)
k

.
Observe that a minhash can be stored as an array of

length k containing the minimum for each i = 1, . . . , k. The
hash value min(π(S)) in the minhash is stored as an integer
of typically 32 or 64 bits. That means that Broder’s scheme
might use 32k or 64k bits of memory to store k hash values
for any set S.

1.1.2 b-bit Minwise Hashing
At WWW’10 Li and König [15] proposed b-bit minwise

hashing as a space-efficient variant of Broder’s minwise hash-

n bits

odd(S1)

S1

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

xx
xx

S2

odd(S2)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

1

xx
xx

1

xx
xx

h(x)h(x)

x'x''

1

h(x')

x
x
x

1

h(x'')

Different independent hash values

Same independent hash values

Figure 2: Illustration of the Odd Sketch construc-
tion. Odd Sketch starts with a 0s bit-vector of size n.
We flip a bit according to each element of the min-
hashes S1 and S2. The contributions of elements in
S1∩S2 cancel out in the exclusive-or odd(S1)⊕odd(S2),
so Odd Sketches use all of the n bits to estimate the
symmetric difference size |S1∆S2|. This reduces the
variance when J is close to 1.

ing scheme. Instead of storing b = 32 or b = 64 bits for each
permutation, this approach suggested using the lowest b bits.
It is based on the intuition that the same hash values give
the same lowest b bits whereas the different hash values give
different lowest b bits with probability 1 − 1/2b. Figure 1
shows how to construct b-bit minwise sketches.

Let minb(π(S)) denote the lowest b bits of the hash value
min(π(S)). Then the b-bit minhash Sb1 is obtained from the
standard minhash S1 by replacing min by minb, reducing

space usage to kb. An unbiased estimator Ĵb for J(S1, S2)
and its variance can be computed as follows:

Ĵb =
|Sb1 ∩ Sb2|/k − 1/2b

1− 1/2b
, Var[Ĵb] =

1− J
k

(
J +

1

2b − 1

)
.

However, when the Jaccard similarity is high it seems that
the b-bit scheme offers less information than it might be able
to. As an extreme example, suppose that we get the estimate

Ĵb = 1, i.e., all the bits of the two summaries are identical.
How confident can we be that J is indeed close to 1? For
example, even if we actually have J = 1− 2

k
it is quite likely

that the two summaries will be identical. Somehow, since
the two summaries are so highly correlated, differences of
just a few bit positions will lead to very different conclusions
on how close J is to 1. Thus we might ask: Is it possible to
do better, avoiding the limits on accuracy that comes when
summaries are highly correlated?

1.2 Our contribution
In this paper, we introduce the Odd Sketch, a compact

binary sketch for estimating the Jaccard similarity of two

sets. This binary sketch is similar to a Bloom filter with one
hash function, constructed on the original minhashes with
the“odd”feature that the usual disjunction is replaced by an
exclusive-or operation. That is, we hash each element of the
minhash into a bit-array data structure. (We will refer to the
hash function used for this as the “sketch hash function”.)
Now, instead of setting a bit to 1, we flip a bit according to
the sketch hash value of each element in the minhash. We
apply the Odd Sketches to minhashes, which means that
the Odd Sketch records for each hash value whether it is
mapped to by an odd number of elements in the minhash.
Figure 2 shows a high level illustration of the construction
of Odd Sketches.

A key feature of the Odd Sketch is that when we com-
pute the exclusive-or of two Odd Sketches, the result will
be equal to the Odd Sketch of the symmetric difference of
the minhashes, i.e., the set of elements in one minhash but
not the other. This is because the contribution of all iden-
tical elements in the minhashes cancel out. In turn, this
means that we are able to base Odd Sketches of size n on
minhashes of size significantly above n whenever J is close
to 1 and there are many identical values in the minhashes,
so that the variance induced by the minhash step is reduced.

The technical difficulty is to provide a good estimator for
the size of a set based on its Odd Sketch. We provide a sur-
prisingly simple, asymptotically precise expression for the
expected fraction of 1s in an Odd Sketch, and show via con-
centration around this expectation that the resulting esti-
mator has good precision as long as the fraction of 1s is
bounded away from 1/2.

We note that a similar approach has previously been used
to estimate the number of distinct elements in a stream,
where the usual disjunction was used instead of an exclusive-
or operation [2]. One of our contributions is showing that
tracking the parity of the number of items that hash to a
bucket is a useful technique in the context of estimating the
size of set differences (rather than the size of sets).

2. ODD SKETCHES

2.1 Construction
The Odd Sketch is a simple, linear sketch of the indicator

vector of a set S. Concretely, the sketch consists of an array
s of n > 2 bits. Let h : Ω 7→ [n] be a hash function, which
we assume here is fully random. In the Odd Sketch, which
we denote by odd(S), the ith bit is given by

si = ⊕
x∈S

1h(x)=i ,

where 0 ≤ i < n. That is, si is the parity of the number of
set items that hash to the ith location.

To compute the sketch, we start with the zero bit vector
of size n. Then we evaluate h on each x ∈ S, and flip
the bit sh(x) of the sketch, as shown in the pseudo-code in
Algorithm 1.

Because odd(S) records the parity of the number of ele-
ments that hash to a location, it follows that the Odd Sketch
of the symmetric set difference S1∆S2 is the exclusive-or of
the Odd Sketches odd(S1) and odd(S2).

Lemma 1. odd(S1)⊕ odd(S2) = odd(S1∆S2).

In the following section, we show how to estimate the
size of a set from the number of 1s in its Odd Sketch. By

Algorithm 1 Odd Sketch(S, n)

Require: A set S ⊂ Ω and the size of sketch in bits n
1: s← [0]n

2: Pick a random hash function h : Ω 7→ [n]
3: for each set element x ∈ S do
4: sh(x) = sh(x) ⊕ 1
5: end for
6: return s

Lemma 1 we can use this to estimate |S1∆S2| from the Odd
Sketches of S1 and S2. If sets S1 and S2 are minhashes of
S1 and S2, then we can estimate the Jaccard similarity of
original two sets from the Odd Sketches of S1 and S2.

2.2 Estimation

2.2.1 Estimating a set’s size from its Odd Sketch
Let m and n denote the size of set S and the size of

odd(S) in bits, respectively. Because our hash functions
are fully random, we can think about the process of con-
structing odd(S) as that of independently throwing m balls
into n bins, and storing as si the parity of the number of
balls in bin i. We are interested in generating an estimate
m̂ for m based on the observation of the number of odd
bins in odd(S). In the following we present two estimation
approaches for the estimate m̂. The first one is based on
the Markov chain model and the second one relies on the
standard Poisson approximation to the balls and bins set-
ting. Both approaches yield the same estimate when n is
sufficiently large.

Consider the parity of number of balls landing in any spe-
cific bin (say the first) as a simple two-state Markov chain
model. The first/second state corresponds to the even/odd
parity. The probability of changing states is 1/n. Let pi
be the probability that any specific bin has an odd number
of balls after i balls have been thrown. A simple induction
yields

pi =
1− (1− 2/n)i

2
.

(This is a standard elementary problem in Markov chains.)
It helps to now introduce some notation. Let Xi be a 0-1

random variable corresponding to the parity of the number
of balls that land in the ith bin after throwing m balls, and
let X =

∑
iXi. We have shown that

E[X] = n
1− (1− 2/n)m

2
.

Hence, a seemingly reasonable approximation for m if we
see z odd bins in the sketch is to assume that z ≈ E[X], in
which case

z ≈ n1− (1− 2/n)m

2
,

and solving we obtain an estimate m̂ by

m̂ =
ln (1− 2z/n)

ln (1− 2/n)
. (1)

This approximation is reasonable if X is sharply concen-
trated around its expectation, which we show later.

The second estimation approach leverages the standard
Poisson approximation to the balls and bins setting and pro-
vides a pratical estimate. That is, when m balls are thrown

into n bins, this is very approximately the same as inde-
pendently giving each bin a number of balls that is Poisson
distributed with mean µ = m/n. (We discuss this further
below; also, see [19, Section 5.4].) Lemma 2 provides the
relationship between the Poisson distribution with mean µ
and the parity of the distribution.

Lemma 2. (Schuster and Philippou [20]) Let Q be a ran-
dom variable that has Poisson distribution with mean µ. The
probability p that Q is odd is (1− e−2µ)/2.

Proof. The probability that Q is odd is given by

p =
∑

i odd

e−µµi

i!
= e−µ

∑
i odd

µi

i!

= e−µ
eµ − e−µ

2
=

1− e−2µ

2
.

Let Yi be the parity of the number of balls that land in
the ith bin in the setting where the number of balls are
independently Poisson distributed with mean µ = m/n in
each bin, and let Y =

∑
i Yi be the number of bins with an

odd number of balls. Then

E[Y] = np = n
1− e−2m/n

2
.

Hence, a seemingly reasonable approximation for m if we
see z odd bins in the sketch is to assume that z ≈ E[Y], in
which case we obtain an estimate m̂ as

m̂ = −n
2

ln (1− 2z/n) . (2)

Since the Yi are independent and identically distributed,
standard Chernoff bounds provide that z ≈ E[Y] with high
probability, as we clarify further below. We note that when n
is sufficiently large in practice, we have ln (1− 2/n) ≈ −2/n.
In this case, the estimate is approximately the estimate de-
rived from equation 1.

2.2.2 Estimating Jaccard similarity from Odd Sketches
Suppose we construct Odd Sketches odd(S1), odd(S2) from

the minhashes S1 and S2 derived from S1 and S2. Recall
that, when we construct sets S1 and S2, if we think of the
sets as random variables before instantiating them, we have

E[|S1∆S2|] = 2k(1− J),

where k is the number of independent permutations and J
is the Jaccard similarity of S1 and S2. Moreover, |S1∆S2|
should be closely concentrated around its expectation, since
each permutation independently gives a match with prob-
ability J . Once we have instantiated S1 and S2, given
odd(S1) and odd(S2), we can estimate |S1∆S2| for the S1

and S2 we derived, using equation 2. For notational conve-
nience we will think of odd(S1) and odd(S2) as the sets of bit
positions containing 1, which means that their exclusive-or
corresponds exactly to the symmetric difference. If we use

ˆ|S1∆S2| to denote our estimate of |S1∆S2|, then

ˆ|S1∆S2| = −
n

2
ln(1− 2 |odd(S1)∆odd(S2)|/n).

Here |odd(S1)∆odd(S2)| refers to the number of 1s in the

structure. Using ˆ|S1∆S2| as a proxy for E[|S1∆S2|], the

Jaccard similarity can be estimated as follows:

Ĵodd = 1−
ˆ|S1∆S2|
2k

= 1 +
n

4k
ln

(
1− 2 |odd(S1)∆odd(S2)|

n

)
.

Both Odd Sketches and b-bit minwise hashing can be
viewed as variations of the original minwise hashing scheme
that reduce the number of bits used. The quality of their es-
timators is dependent on the quality of the original minwise
estimators. In practice, both Odd Sketches and b-bit min-
wise hashing need to use more permutations but less storage
space than the original minwise hashing scheme.

2.3 Analysis
In the previous section, we assumed that the number of

odd bins in our data structure was closely concentrated
around its expectation to justify various approximations.
Here we justify this assumption. This is straightforward
in the Poisson setting where bin parities are independent;
we show how to handle the dependencies that exist in the
balls-and-bins model. We also directly calculate the vari-
ance of the number of odd bins for both the Poisson and
balls-and-bins setting.

2.3.1 Concentration
Recall our notation: we throw m = µn balls into n bins,

so that the average number of balls per bin is µ. We let Xi
be the parity of the number of balls that land in the ith bin
and X =

∑
iXi be the number of odd bins. Similarly, let Yi

be the parity of the number of balls that land in the ith bin
in the setting where the number of balls are independently
Poisson-distributed, and let Y =

∑
i Yi. We show that X

and Y are closely concentrated around their means.
We use the standard approach of passing to the setting

where each bin obtains independently a Poisson distributed
number of balls with mean µ. This is justified by, for exam-
ple, [19, Corollary 5.9] where the following is shown:

Lemma 3. [Corollary 5.9 of [19]] Any event that takes
placed with probability p when each bin obtains an indepen-
dently distributed Poisson number of balls with mean µ takes
place with probability at most pe

√
m when m = µn balls are

thrown into n bins.

Since Y is the sum of independent 0-1 random variables,
by applying a Chernoff bound [19, Exercise 4.13] to Y , we
have:

Pr(|Y − E[Y]| ≥ εn) ≤ 2e−2nε2 .

Hence, from Lemma 3 we have

Pr(|X − E[Y]| ≥ εn) ≤ (2e
√
m)e−2nε2 .

Denote by X̄ = 1
n
X the fraction of bins with an odd number

of balls. We find

Pr(|X̄ − 1

n
E[Y]| ≥ ε) ≤ (2e

√
m)e−2nε2 ,

Pr(|X̄ − p| ≥ ε) ≤ (2e
√
m)e−2nε2 ,

where p =
(

1− e−2m/n
)
/2. The true expected fraction of

odd bins is E[X]/n = 1−(1−2/n)m

2
, which differs from p by

an o(1) amount.

Since m corresponds to the symmetric difference between
two minhashes, we have m ≤ 2k. Hence, by choosing n >
cε−2 log k for some constant c, our estimator closely concen-
trates around its mean with probability 1− k−ω(1).

2.3.2 Variance bound
We note that the variance on the number of odd bins for

the Poisson setting is trivial to calculate, since the bins are

independent. Letting p =
(

1− e−2m/n
)
/2, the standard re-

sult (on variance of biased coin flips) gives that the variance
is np(1− p).

For the balls and bins case there are dependencies among
the bin loads that make the variance calculation more diffi-
cult. Recall that pi is the probability that any specific bin
has an odd number of balls after i balls have been thrown,
and

pi =
1− (1− 2/n)i

2
,

so each Xi = 1 with probability (1 − (1 − 2/n)m)/2. To
calculate the variance, we first calculate E[X2]; the standard
expansion gives

E[X2] = E[(
∑
i

Xi)
2]

=
∑
i

E[X2
i] + 2

∑
i<j

E[XiXj]

=
∑
i

E[Xi] + 2
∑
i<j

E[XiXj].

where we have used the fact that (Xi)
2 = Xi since Xi only

takes on the values 0 and 1. The first summation is just
E[X].

To calculate the second summation, by symmetry it suf-
fices to consider a specific pair of variables, say X1 and X2.
We consider the total number of balls that land in the com-
bination of bins 1 and 2. If this number is odd, then clearly
X1X2 = 0. If this number is 0, then clearly X1X2 = 0. If
this number is even, but more than 0, then X1X2 = 1 with
probability exactly 1/2. To see this, consider the last ball
that lands in either bin 1 or bin 2. One of these bins must
have an odd number of balls. If the new ball lands in the
other bin, then both have an odd number of balls; this hap-
pens with probability 1/2. It follows that E[X1X2] is half
the probability that bins 1 and 2 considered together obtain
an even and positive number of balls. As with the calcula-
tion for pi, a simple induction based on the two-state Markov
chain model shows that after i balls have been thrown, the
probability qi that the first two bins have an even number
of balls greater than 0 is

qi =
1 + (1− 4/n)i − 2(1− 2/n)i

2
.

Hence the second sum is

(
n

2

)
1 + (1− 4/n)m − 2(1− 2/n)m

2
.

The variance is then E[X2]− E[X]2, or(
n

2

)
1 + (1− 4/n)m − 2(1− 2/n)m

2

+
n(1− (1− 2/n)m)

2
−
(
n(1− (1− 2/n)m)

2

)2

.

Simplifying, this is

n2 (1− 4/n)m − (1− 2/n)2m

4
+ n

1− (1− 4/n)m

4
.

While this is easily seen to be O(n2), the coefficient

(1− 4/n)m − (1− 2/n)2m

4

of the n2 term above is in fact O(1/n2) when m = µn. (Note
that both expressions in the numerator converge to and are
approximately e−4m/n. By examining the asymptotics care-
fully one can show the coefficient is O(1/n2).) Hence the
variance here is also O(n). Indeed, the second term is

n
1− (1− 4/n)m

4
≈ n1− e−4m/n

4
= np(1− p),

which is the variance for the Poisson setting, and the first
term is negative. Again, by considering the asymptotic ex-
pansions carefully one obtains that the variance in the Pois-
son case is larger than in the case where there are exactly
m balls thrown for large enough n, as one might naturally
expect.

2.4 Accuracy of the estimator
In the previous sections we bounded the variance and gave

strong tail bounds for the fraction z/n of 1s in an Odd

Sketch. Recall that its expected value is pm = 1−(1−2/n)m

2
derived from the Markov chain and its practical estimate

is p = 1−e−2m/n

2
derived from the Poisson approximation.

What remains is to bound the error resulting from applying
the estimator from equation (2), repeated here for conve-
nience:

m̂ = −n
2

ln (1− 2z/n) .

Defining the function f(x) = −n
2

ln(1− 2x), we have m̂ =
f(z/n). There are two sources of inaccuracy: The first is
that the estimator has a bias since the expected number of

1s, npm = n 1−(1−2/n)m

2
, differs from the practical estimate

np = n 1−e−2m/n

2
. However, it can be confirmed by an easy

computation that the difference can be at most 1, so this is
not significant.

The second, and more significant, source of error is that
when z/n deviates from its expectation pm, f(z/n) will de-
viate from f(pm). Informally, an if z/n deviates from its ex-
pectation by ε, this will give an error of roughly f ′(z/n) · ε,
as long as ε is small enough, where f ′(x) = n

1−2x
is the

derivative of f . It is clear that a small error can be mag-
nified significantly if z/n is close to 1/2, since f ′(x) goes
to infinity as x → 1/2. Therefore we choose parameters
such that p, the practical estimate of z/n, is bounded away
from 1/2 (p ≈ 0.3 gives the best results, as we see when
we discuss our experiments). By the results in section 2.3.1
this means that with high probability (wrt. n) we will have
z/n < 0.4 (say). As long as this is the case, since f ′ is
monotonely increasing, we have that the error is bounded

by f ′(0.4)|z/n − pm| = 5n. This bound is pessimistic, but
shows that the estimation error is (with high probability)
proportional to the error in the estimate of pm. In turn, this
implies that the variance of the estimator is O(n).

2.5 Weighted similarity
Odd Sketches work with any notion of similarity that can

be transformed to Hamming distance of two vectors. In
particular, it works with any similarity measure that can
be captured using the probability that two minhashes are
identical. For example, the Jaccard similarity of two vectors
v, w ∈ Rd with nonnegative entries can be defined as:

J(v, w) =

∑
i min(vi, wi)∑
i max(vi, wi)

,

generalizing standard Jaccard similarity which corresponds
to 0-1 vectors. Hash functions that result in minhash equal-
ity with probability J(v, w) can be found in [10, 13, 17].

3. EXPERIMENTAL RESULTS
We implemented b-bit minwise hashing and Odd Sketch

in Matlab, and conducted experiments on a 2.67 GHz Core
i7 Windows machine with 3GB of RAM. We compared the
performance of b-bit minwise hashing and Odd Sketch on as-
sociation rule learning and web duplication detection tasks.
All results are the averages of 10 runs of the algorithms.

3.1 Parameter setting
It is obvious that the performance of both b-bit minwise

and Odd Sketch depends on the number of independent per-
mutations used in the original minwise hashing scheme. The
b-bit minwise scheme uses kb = n/b permutations where the
storage space is n bits and b ≥ 1 is the number of bits per
permutation. Since larger kb provides higher accuracy, set-
ting b = 1 turns out to achieve the smallest variance, as will
be clear from our empirical evaluation.

In the Odd Sketch setting, the number of independent
permutations kodd is dependent on the sketch size n and the
user-defined similarity threshold J0. Typically, we are inter-
ested in retrieving pairs of sets such that J > J0 (and per-
haps subject these pairs to additional filtering). Moreover,
we want to choose kodd as large as possible to reduce the
error from the original minwise hashing step. It seems diffi-
cult to mathematically establish the optimal way of choosing
kodd, but we conducted experiments that indicate that the
smallest variance is achieved when the exclusive-or of two
odd sketches with similarity J0 contains around 30% 1s.

Our estimator needs the fraction of 1s in odd(S1∆S2) to
be smaller than 1/2. If a fraction of more than 1/2 is ob-
served this is (with high probability) a sign of very low Jac-
card similarity, so we may estimate J = 0. Recall that the
process of constructing odd(S1∆S2) corresponds to throwing
|S1∆S2| balls into n bins. It turns out that if we choose kodd
such that |S1∆S2| ≈ n/2 we get the most accurate estimate
when similarity is around J . In other words, we choose the

parameter kodd such that the ratio α = 2kodd(1−J0)
n

≈ 1
2
.

We conducted experiments to evaluate this choice of ratio
α. We compared the mean square error (MSE, incorporating

both variance and bias) of our estimator Ĵodd for different

ratios of α = 2kodd(1−J0)
n

in [0.25, 1], and for different sketch
sizes n ∈ [500, 1000] bits. For each choice we found that
α = 1/2 gave the smallest observed MSE. Figure 3 displays

0.25 0.28 0.33 0.4 0.5 0.67
0.075

0.08

0.085

0.09

0.095

0.1

0.105

Ratio (α)

(a) J = 0.9, n = 500 − 1000

A
ve

ra
ge

 M
S

E

0.25 0.28 0.33 0.4 0.5 0.67
0.032

0.033

0.034

0.035

0.036

0.037

0.038

0.039

0.04

0.041

0.042

Ratio (α)

(b) n = 800, J = 0.75 − 0.95

A
ve

ra
ge

 M
S

E

Figure 3: Comparison of the average MSE on differ-
ent ratios α on the synthetic dataset: (a) Fix J = 0.9
and change n = 500 − 1000 bits; (b) Fix n = 800 bits
and change J = 0.75− 0.95.

the average MSE of Ĵodd, averaged over variety of values of
J and n. It illustrates that Odd Sketch achieves the highest
accuracy when using the ratio α = 0.5. So we can choose
kodd = n

4(1−J0)
given a threshold J0. When we are interested

in J0 ≥ 0.75, we can set kodd > n. This means that Odd
Sketch can use more independent permutations than b-bit
schemes. In fact, even for the inferior choice of kodd = n,
Odd Sketch can achieve better performance than 1-bit min-
wise hashing when J0 > 0.75.

3.2 Accuracy of Estimation
This subsection presents experiments to further evaluate

the accuracy of our estimation algorithm. We carried out
experiments to compare the accuracy of b-bit minwise hash-
ing and Odd Sketch. In the b-bit schemes, we set kb = n/b
to achieve a space usage of n bits. For the Odd Sketch, we
set kodd = n

4(1−J) . We again measured the mean square er-

ror (MSE) of estimators of both approaches. We varied n
in {512, 1024} bits and conducted experiments on synthetic
datasets. (But note that since we apply hashing the outcome
is independent of the particular set elements, and we expect
the same result on any real-life dataset.) This dataset is very
high-dimensional (D = 10, 000) and highly sparse (sparsity
> 99.9%).

Figure 4 shows the negative log of MSE (− log (MSE))
of estimators of the two approaches for different values J .
We note that the MSE is always smaller than 1 in our ex-
periments, so larger − log (MSE) is better. For high Jac-
card similarities J ≥ 0.8, Odd Sketch provides a smaller
error than the b-bit minwise approach. The difference is
more dramatic when J is very high because Odd Sketch
makes use of a larger number of independent permutations
than the b-bit minwise schemes. This figure also shows that
the 1-bit scheme has superior performance compared to the
b-bit schemes for b > 1. We note that b-bit schemes for
b > 1 require additional bit-manipulation to pack b bits of
hash values into 64-bit (or 32-bit) words. In contrast, both
Odd Sketch and 1-bit schemes only need the XOR and bit-
counting operations to compare two summaries.

One might argue that Odd Sketch requires a more ex-
pensive preprocessing step than b-bit minwise hashing due
to the use of larger number of permutations in the minwise
hashing step. But even with kodd = n, where the hashing
cost is identical to that of 1-bit minwise hashing, Odd Sketch

0.70 0.75 0.80 0.85 0.90 0.95 0.99
6

7

8

9

10

11

12

13

14

The Jaccard similarity (J)

(a) n = 512

−
lo

g(
M

S
E

)

Odd
b = 1
b = 2
b = 4

0.70 0.75 0.80 0.85 0.90 0.95 0.99
6

7

8

9

10

11

12

13

14

The Jaccard similarity (J)

(b) n = 1024

−
lo

g(
M

S
E

)

Odd
b = 1
b = 2
b = 4

Figure 4: Comparison of the negative log of mean
square error (MSE) of Odd Sketch and b-bit minwise
hashing for different Jaccard similarity. In these ex-
periments Odd Sketch used kodd = n

4(1−J) permuta-

tions, and b-bit minwise hashing used kb = n
b
.

0.70 0.75 0.80 0.85 0.90 0.95 0.99
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

The Jaccard similarity (J)

(a) n = 512

−
lo

g(
M

S
E

)

Odd
b = 1
b = 2
b = 4

0.70 0.75 0.80 0.85 0.90 0.95 0.99
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

The Jaccard similarity (J)

(b) n = 1024

−
lo

g(
M

S
E

)

Odd
b = 1
b = 2
b = 4

Figure 5: Comparison of the negative log of mean
square error (MSE) of Odd Sketch and b-bit minwise
hashing for different Jaccard similarities. Here, Odd
Sketch uses kodd = n, and b-bit minwise hashing uses
kb = n

b
permutations.

still provides better accuracy when J > 0.75, as shown in
Figure 5.

When the target similarity is very high, the authors of
b-bit minwise hashing also discussed the idea of combining
any 2 bits of a 1-bit minhash by XOR operations to increase
the amount of information in each bit. This approach is
called 1

2
-bit minwise hashing, and similar to Odd Sketch

has a nonlinear estimator. The 1
2
-bit scheme uses k 1

2
= 2n

permutations.
We carried out experiments to compare the mean square

errors of estimators of Odd Sketch and 1
2
-bit minwise hash-

ing, as shown in Figure 6. The figure shows that Odd Sketch
achieves a considerably smaller error than 1

2
-bit minwise

hashing when J > 0.85 for both choices of k. It also shows
that Odd Sketch with the best choice of kodd provides higher
accuracy than for kodd = 2n.

We conclude the accuracy evaluation of Odd Sketch by de-
picting the empirical cumulative distribution function (cdf)
of estimators. Figure 7 shows the empirical cdfs of Odd
Sketch, 1-bit scheme and 1

2
-bit scheme on 10,000 estima-

tors of the Jaccard similarity J = 0.9. The slope of cdf of

0.75 0.80 0.85 0.90 0.95 0.99
7

8

9

10

11

12

13

14

The Jaccard similarity (J)

(a) Different k setting

−
lo

g(
M

S
E

)

Odd
b = 1/2

0.75 0.80 0.85 0.90 0.95 0.99
6

7

8

9

10

11

12

13

The Jaccard similarity (J)

(b) Same k setting

−
lo

g(
M

S
E

)

Odd
b = 1/2

Figure 6: Comparison of the negative log of mean
square error (MSE) of Odd Sketch and 1

2
-bit min-

wise hashing for different Jaccard similarities: (a)
Different number of permutations: kodd = n

4(1−J)
and k 1

2
= 2n; (b) Same number of permutations:

kodd = k 1
2

= 2n.

Odd Sketch is steeper than that of 1
2
-bit scheme and sig-

nificantly steeper than that of 1-bit scheme. This means
that Odd Sketch provides superior performance compared
to b-bit minwise hashing when the target similarity is high.

0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Estimator of J

C
um

m
ul

at
iv

e
P

ro
ba

bi
lit

y

Odd
b = 1/2
b = 1

Figure 7: Comparison of the empirical cumulative
distribution function (cdf) of estimators based on
Odd Sketch, 1-bit scheme, and 1

2
-bit scheme with

J = 0.9.

3.3 Association Rule Learning
Cohen et al. [8] used minwise hashing to generate the

candidate sets of high Jaccard similarity in the context of
learning pairwise associations. This subsection compares
the performance of Odd Sketch and b-bit schemes in this
setting. Since b = 1 provides the highest accuracy among
b ≥ 1, we only used the 1-bit scheme in our experiment.
For a more clear comparison, we used the same number
of permutations for the two approaches. We measured the
precision-recall ratio of both approaches on detecting the
pairwise items that have Jaccard similarity larger than a

100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1

The size of sketch in bits (n)

(a) J
0
 = 0.9

P
re

ci
si

on

Odd
b = 1

100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1

The size of sketch in bits (n)

(b) J
0
 = 0.9

R
ec

al
l

Odd
b = 1

100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1

The size of sketch in bits (n)

(c) J
0
 = 0.8

P
re

ci
si

on

Odd
b = 1

100 200 300 400 500
0.4

0.5

0.6

0.7

0.8

0.9

1

The size of sketch in bits (n)

(d) J
0
 = 0.8

R
ec

al
l

Odd
b = 1

Figure 8: Comparison of the precision-recall ra-
tio between Odd Sketches and 1-bit scheme on the
mushroom dataset.

threshold J0. We conducted experiments on the large pub-
lic datasets1: mushroom (N = 8124;D = 119) and connect
(N = 67, 557;D = 127). Due to the similar results on both
datasets, we only report the representative results of mush-
room dataset here.

Figure 8 shows the precision-recall ratio of the Odd Sketch
and the 1-bit scheme. For the high target threshold J0 = 0.9,
the Odd Sketch provides significantly higher precision and
recall ratio (up to 10% better) than 1-bit minwise hashing.
For J0 = 0.8, the Odd Sketch is still better in precision but
slightly worse in recall.

Figure 9 demonstrates the superiority of Odd Sketch com-
pared to 1

2
-bit minwise hashing with respect to precision.

The Odd Sketch achieved up to 20% higher precision while
providing similar recall.

100 200 300 400 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

The size of sketch in bits (n)

(a) J
0
 = 0.9

P
re

ci
si

on

Odd
b = 1/2

100 200 300 400 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

The size of sketch in bits (n)

(b) J
0
 = 0.9

R
ec

al
l

Odd
b = 1/2

Figure 9: Comparison of the precision-recall ra-
tio between Odd Sketches and 1

2
-bit scheme on the

mushroom dataset with J0 = 0.9.

1http://fimi.ua.ac.be/data/

3.4 Web Duplicate Detection
In this experiment, we compare the performance of the

two approaches on web duplicate detection tasks on the
bag of words dataset2. We picked three datasets, includ-
ing KOS blog entires (D = 6906;N = 3430), Enron Emails
(D = 28, 102;N = 39, 861), and NYTimes articles (D =
102, 660;N = 300, 000). We computed all pairwise Jaccard
similarities among documents, and retrieved every pair with
J > J0. For the sake of comparison, we used the same num-
ber of permutations and considered the thresholds J0 = 0.85
and J0 = 0.90. We again used the precision-recall ratio as
our standard measure.

Figures 10 and 11 show the precision-recall ratio for the
Odd Sketch and 1-bit minwise hashing on three datasets
with J0 = 0.85 and J0 = 0.90, respectively. The Odd Sketch
obtains higher relative precision ratio or at least is compa-
rable to 1-bit scheme when J0 = 0.85. It achieves up to 7%
and 1% higher than the 1-bit scheme on KOS blog entries
and Enron Emails, respectively. For J0 = 0.90, the precision
ratios are almost the same on three datasets. However, Odd
Sketch greatly outperforms in the recall ratio. The relative
recall obtained by the Odd Sketch is approximately 15%
higher than the 1-bit scheme on the KOS blog entries when
J0 = 0.85 and J0 = 0.90. The difference in relative recall
is not significant on the other datasets. These relative gaps
are around 5% and less 1% on Enron Emails and NYTimes
articles, respectively.

Figure 12 shows the observed precision-recall graphs of the
Odd Sketch and the 1

2
-bit scheme. We again set kodd = k1 =

2n for the sake of fair comparison. Both approaches achieve
very high precision (higher than 90%) on the three datasets.
The Odd Sketch still obtains higher precision than the 1

2
-bit

scheme although the difference is not dramatic. The gap of
both schemes in the recall ratio is considerable on KOS blog
entries and Enron Emails. The most dramatic difference
is around 4% when n = 200. On the NYTimes articles
dataset, the ratio curves of both schemes are overlapping
when n ≥ 200.

4. CONCLUSION
In this paper, we proposed the Odd Sketch, a compact bi-

nary sketch for estimating the Jaccard similarity of two sets.
By combining the minwise hashing technique with a hash ta-
ble where only the parity of the number of items hashed to
bucket is stored, Odd Sketches can be combined with just
an exclusive-or operation to allow a simple estimation of
the Jaccard similarity that provides a highly space-efficient
solution, particularly for the high similarity regime. We pre-
sented a theoretical analysis of the quality of estimate. Our
experiments on synthetic and real world datasets demon-
strate the efficiency of Odd Sketches in comparison with
b-bit minwise hashing schemes on association rule learning
and web duplicate detection tasks. We expect that there are
many other additional applications where Odd Sketches can
be similarly applied.

5. ACKNOWLEDGMENTS
The work of the first author is supported by NSF grants

CCF-1320231, CNS-1228598, IIS-0964473, and CCF-0915922.
Part of the work by the first author was done while visiting

2http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

The size of sketch in bits (n)

(a) KOS blog entries

P
re

ci
si

on

Odd
b = 1

100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

1

The size of sketch in bits (n)

(b) Enron Emails

P
re

ci
si

on

Odd
b = 1

100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

1

The size of sketch in bits (n)

(c) NY Times articles

P
re

ci
si

on

Odd
b = 1

100 200 300 400 500
0.4

0.5

0.6

0.7

0.8

0.9

The size of sketch in bits (n)

(d) KOS blog entries

R
ec

al
l

Odd
b = 1

100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

The size of sketch in bits (n)

(e) Enron Emails

R
ec

al
l

Odd
b = 1

100 200 300 400 500
0.98

0.985

0.99

0.995

1

The size of sketch in bits (n)

(f) NY Times articles

R
ec

al
l

Odd
b = 1

Figure 10: Comparison of the precision-recall ratio between Odd Sketches and 1-bit minwise hashing with
J0 = 0.85 on the three datasets: KOS blog entries, Enron Emails and NYTimes articles.

100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

The size of sketch in bits (n)

(a) KOS blog entries

P
re

ci
si

on

Odd
b = 1

100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

1

The size of sketch in bits (n)

(b) Enron Emails

P
re

ci
si

on

Odd
b = 1

100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

1

The size of sketch in bits (n)

(c) NY Times articles

P
re

ci
si

on

Odd
b = 1

100 200 300 400 500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

The size of sketch in bits (n)

(d) KOS blog entries

R
ec

al
l

Odd
b = 1

100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

The size of sketch in bits (n)

(e) Enron Emails

R
ec

al
l

Odd
b = 1

100 200 300 400 500
0.98

0.985

0.99

0.995

1

The size of sketch in bits (n)

(f) NY Times articles

R
ec

al
l

Odd
b = 1

Figure 11: Comparison of the precision-recall ratio between Odd Sketches and 1-bit minwise hashing with
J0 = 0.90 on the three datasets: KOS blog entries, Enron Emails and NYTimes articles.

100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

The size of sketch in bits (n)

(a) KOS blog entries

P
re

ci
si

on

Odd
b = 1/2

100 200 300 400 500
0.85

0.9

0.95

1

The size of sketch in bits (n)

(b) Enron Emails

P
re

ci
si

on

Odd
b = 1/2

100 200 300 400 500
0.98

0.985

0.99

0.995

1

The size of sketch in bits (n)

(c) NY Times articles

P
re

ci
si

on

Odd
b = 1/2

100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1

The size of sketch in bits (n)

(d) KOS blog entries

R
ec

al
l

Odd
b = 1/2

100 200 300 400 500
0.7

0.75

0.8

0.85

0.9

0.95

1

The size of sketch in bits (n)

(e) Enron Emails

R
ec

al
l

Odd
b = 1/2

100 200 300 400 500
0.9

0.92

0.94

0.96

0.98

1

The size of sketch in bits (n)

(f) NY Times articles

R
ec

al
l

Odd
b = 1/2

Figure 12: Comparison of the precision-recall ratio between Odd Sketches and 1
2
-bit minwise hashing with

J0 = 0.90 on the three datasets: KOS blog entries, Enron Emails and NYTimes articles.

the IT University of Copenhagen. The work of the second
and third author is supported by the Danish National Re-
search Foundation under the Sapere Aude program. We
thank the anonymous reviewers for their constructive com-
ments and suggestions.

6. REFERENCES
[1] Y. Bachrach, E. Porat, and J. S. Rosenschein.

Sketching techniques for collaborative filtering. In
IJCAI, pages 2016–2021, 2009.

[2] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar,
and L. Trevisan. Counting distinct elements in a data
stream. In Randomization and Approximation
Techniques in Computer Science, pages 1–10.
Springer, 2002.

[3] M. Bendersky and W. B. Croft. Finding text reuse on
the web. In WSDM, pages 262–271, 2009.

[4] A. Z. Broder. On the resemblance and containment of
documents. Sequences, pages 21–29, 1997.

[5] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent
permutations. J. Comput. Syst. Sci., 60(3):630–659,
2000.

[6] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Computer
Networks, 29(8-13):1157–1166, 1997.

[7] F. Chierichetti, R. Kumar, S. Lattanzi,
M. Mitzenmacher, A. Panconesi, and P. Raghavan. On
compressing social networks. In KDD, pages 219–228,
2009.

[8] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. Motwani, J. D. Ullman, and C. Yang. Finding
interesting associations without support pruning.
IEEE Trans. Knowl. Data Eng., 13(1):64–78, 2001.

[9] A. Das, M. Datar, A. Garg, and S. Rajaram. Google
news personalization: scalable online collaborative
filtering. In WWW, pages 271–280, 2007.

[10] S. Gollapudi and R. Panigrahy. Exploiting asymmetry
in hierarchical topic extraction. In CIKM, pages
475–482, 2006.

[11] S. Gollapudi and A. Sharma. An axiomatic approach
for result diversification. In WWW, pages 381–390,
2009.

[12] M. R. Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In SIGIR, pages
284–291, 2006.

[13] S. Ioffe. Improved consistent sampling, weighted
minhash and l1 sketching. In ICDM, pages 246–255,
2010.

[14] K. Kutzkov, A. Bifet, F. Bonchi, and A. Gionis. Strip:
stream learning of influence probabilities. In KDD,
pages 275–283, 2013.

[15] P. Li and A. C. König. b-bit minwise hashing. In
WWW, pages 671–680, 2010.

[16] P. Li, A. Shrivastava, J. L. Moore, and A. C. König.
Hashing algorithms for large-scale learning. In NIPS,
pages 2672–2680, 2011.

[17] M. Manasse, F. McSherry, and K. Talwar. Consistent
weighted sampling. MSR-TR-2010-73 technical report,
2010.

[18] G. S. Manku, A. Jain, and A. D. Sarma. Detecting
near-duplicates for web crawling. In WWW, pages
141–150, 2007.

[19] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.

[20] E. F. Schuster and A. N. Philippou. The odds in some
odd-even games. The American Mathematical
Monthly, 82:646–648, 1975.

[21] T. Urvoy, E. Chauveau, P. Filoche, and T. Lavergne.
Tracking web spam with html style similarities.
TWEB, 2(1), 2008.

