
Linear Probing with Constant Independence

Anna Pagh∗ Rasmus Pagh∗ Milan Ružić∗

ABSTRACT
Hashing with linear probing dates back to the 1950s, and
is among the most studied algorithms. In recent years it
has become one of the most important hash table organiza-
tions since it uses the cache of modern computers very well.
Unfortunately, previous analyses rely either on complicated
and space consuming hash functions, or on the unrealistic
assumption of free access to a truly random hash function.
Already Carter and Wegman, in their seminal paper on uni-
versal hashing, raised the question of extending their anal-
ysis to linear probing. However, we show in this paper that
linear probing using a pairwise independent family may have
expected logarithmic cost per operation. On the positive
side, we show that 5-wise independence is enough to ensure
constant expected time per operation. This resolves the
question of finding a space and time efficient hash function
that provably ensures good performance for linear probing.

Categories and Subject Descriptors
E.2 [Data]: Data Storage Representations; H.3.3 [Informa-

tion Storage and Retrieval]: Information Search and Re-
trieval

General Terms
Algorithms, Performance, Theory

Keywords
Hashing, Linear Probing

∗Computational Logic and Algorithms Group, IT University
of Copenhagen, Rued Langgaards Vej 7, 2300 København S,
Denmark.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07, June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

1. INTRODUCTION
Hashing with linear probing is perhaps the simplest algo-

rithm for storing and accessing a set of keys that obtains
nontrivial performance. Given a hash function h, a key x is
inserted in an array by searching for the first vacant array
position in the sequence h(x), h(x) + 1, h(x) + 2, . . . (Here,
addition is modulo r, the size of the array.) Retrieval of a
key proceeds similarly, until either the key is found, or a
vacant position is encountered, in which case the key is not
present in the data structure. Deletions can be performed
by moving elements back in the probe sequence in a greedy
fashion (ensuring that no key x is moved beyond h(x)), until
a vacant array position is encountered.

Linear probing dates back to 1954, but was first analyzed
by Knuth in a 1963 memorandum [7] now considered to be
the birth of the area of analysis of algorithms [10]. Knuth’s
analysis, as well as most of the work that has since gone into
understanding the properties of linear probing, is based on
the assumption that h is a truly random function. In 1977,
Carter and Wegman’s notion of universal hashing [2] initi-
ated a new era in the design of hashing algorithms, where ex-
plicit and efficient ways of choosing hash functions replaced
the unrealistic assumption of complete randomness. In their
seminal paper, Carter and Wegman state it as an open prob-
lem to “Extend the analysis to [...] double hashing and open
addressing.”1

1.1 Previous results using limited randomness
The first analysis of linear probing relying only on limited

randomness was given by Siegel and Schmidt in [11, 13].
Specifically, they show that O(log n)-wise independence is
sufficient to achieve essentially the same performance as in
the fully random case. (We use n to denote the number
of keys inserted into the hash table.) Another paper by
Siegel [12] shows that evaluation of a hash function from
a O(log n)-wise independent family requires time Ω(log n)

unless the space used to describe the function is nΩ(1). A
family of functions is given that achieves space usage nǫ and
constant time evaluation of functions, for any ǫ > 0. How-
ever, this result is only of theoretical interest since the asso-
ciated constants are very large (and growing exponentially
with 1/ǫ).

1Nowadays the term “open addressing” refers to any hashing
scheme where the data structure is an array containing only
keys and empty locations. However, Knuth used the term
to refer to linear probing in [7], and since it is mentioned
here together with the double hashing probe sequence, we
believe that it refers to linear probing.

A potentially more practical method is the “split and
share” technique described in [4]. It can be used to achieve
characteristics similar to those of linear probing, still us-
ing space nǫ, for any given ǫ > 0. The idea is to split the
set of keys into many subsets of roughly the same size, and
simulate full randomness on each part. Thus, the resulting
solution would be a collection of linear probing hash tables.

A significant drawback of both methods above, besides
a large number of instructions for function evaluation, is
the use of random accesses to the hash function description.
The strength of linear probing is that for many practical
parameters, almost all lookups will incur only a single cache
miss. Performing random accesses while computing the hash
function value may destroy this advantage.

1.2 Our results
We show in this paper that linear probing using a pair-

wise independent family may have expected logarithmic cost
per operation. Specifically, we resolve the open problem of
Carter and Wegman by showing that linear probing inser-
tion of n keys in a table of size 2n using a function of the
form x 7→ ((ax + b) mod p) mod 2n, where p = 4n + 1 is
prime and we randomly choose a ∈ [p]\{0} and b ∈ [p], re-
quires Ω(n log n) insertion steps in expectation for a worst
case insertion sequence (chosen independently of a and b).
Since the total insertion cost equals the total cost of looking
up all keys, the expected average time to look up a key in
the resulting hash table is Ω(log n). The main observation
behind the proof is that if a is the multiplicative inverse
(modulo p) of a small integer m, then inserting a certain set
that consists of two intervals has expected cost O(n2/m).

On the positive side, we show that 5-wise independence
is enough to ensure constant expected time per operation,
for load factor α = n/r bounded away from 1. Our proof is
based on a new way of bounding the cost of linear probing
operations, by counting intervals in which “many” probe
sequences start.

Our analysis gives a bound of O(1 + 1
(1−α)3

) expected

time per operation at load factor α. This implies a bound
of O(1 + 1

(1−α)2
) expected time on average for successful

searches. These bounds are a factor Ω(1
1−α

) higher than
for linear probing with full independence. However, this
situation changes if r is a power of 2 and the probe sequence
slightly changes to

h(x), h(x) ⊕ 1, h(x) ⊕ 2, h(x) ⊕ 3, . . .

where ⊕ denotes bitwise exclusive or. This probe sequence is
arguably even more cache friendly than classical linear prob-
ing if we assume that memory block boundaries are at pow-
ers of 2. In fact, we analyze a slightly more general class of
open addressing methods called blocked probing, which also
includes a special kind of bidirectional linear probing. For
this class we get the same dependence on α (up to constant
factors) as for full independence, again using only 5-wise in-
dependent hash functions. A particularly precise analysis of
successful searches is conducted, showing that the expected
number of probes made during a search for a random ele-
ment in the table is less than 1 + 2

1−α
.

1.3 Significance
Several recent experimental studies [1, 5, 9] have found

linear probing to be the fastest hash table organization for

moderate load factors (30-70%). While linear probing op-
erations are known to require more instructions than those
of other open addressing methods, the fact that they ac-
cess an interval of array entries means that linear probing
works very well with modern architectures for which sequen-
tial access is much faster than random access (assuming that
the elements we are accessing are each significantly smaller
than a cache line, or a disk block, etc.). However, the hash
functions used to implement linear probing in practice are
heuristics, and there is no known theoretical guarantee on
their performance. Since linear probing is particularly sen-
sitive to a bad choice of hash function, Heileman and Luo [5]
advice against linear probing for general-purpose use. Our
results imply that simple and efficient hash functions, whose
description can be stored in CPU registers, can be used to
give provably good performance.

2. PRELIMINARIES

2.1 Notation and definitions
Define [x] = {0, 1, . . . , x − 1}. Throughout this paper

S denotes a subset of some universe U , and h will denote
a function from U to R = [r]. We denote the elements
of S by {x1, x2, . . . , xn}, and refer to the elements of S as
keys. We let n = |S|, and α = n/r. For Q ⊆ R we define
|h(S) ∩m Q| = |{x ∈ S | h(x) ∈ Q}|. For any integers x and
a define x ⊖ a = x − (x mod a). The function x 7→ x − ⌊x⌋
is denoted by frac(x).

A family H of functions from U to R is k-wise indepen-
dent if for any k distinct elements x1, . . . , xk ∈ U and h
chosen uniformly at random from H, the random variables
h(x1), . . . , h(xk) are independent2. We refer to the variable

ᾱH = n max
x∈U, ρ∈R

Prh∈H{h(x) = ρ}

as the maximum load of H. When the hash function family
in question is understood from the context, we omit the
subscript of ᾱ. If H distributes hash function values of all
elements of U uniformly on R, we will have ᾱ = α, and in
general ᾱ ≥ α.

Let Q ⊆ R. By a + Q we denote the translated set

{(a + y) mod r | y ∈ Q} ,

and we define a−Q analogously. An interval (modulo r) is
a set of the form a + [b], for integers a and b. We will later
use sets of the form h(x)+Q, for a fixed x and with Q being
an interval.

We introduce a function which simplifies statements of
some upper bounds — those in which constant factors are
explicit. Define T (ᾱ) as the function over the domain (0, 1)
with the value given by

T (ᾱ) =

(

5.2ᾱ
(1−ᾱ)2

+ 1
3

, ᾱ ≥ 1
3

2.5ᾱ
(1−ᾱ)4

, ᾱ < 1
3

.

It can be checked that T (ᾱ) < 5.7ᾱ
(1−ᾱ)2

.

2We note that in some papers, the notion of k-wise indepen-
dence is stronger in that it is required that function values
are uniformly distributed in R. However, some interesting
k-wise independent families have a slightly nonuniform dis-
tribution, and we will provide analysis for such families as
well.

2.2 Hash function families
Carter and Wegman [15] observed that the family of de-

gree k − 1 polynomials in any finite field is k-wise indepen-
dent. Specifically, for any prime p we may use the field
defined by arithmetic modulo p to get a family of functions
from [p] to [p] where a function can be evaluated in time
O(k) on a RAM, assuming that addition and multiplication
modulo p can be performed in constant time. To obtain a
smaller range R = [r] we may map integers in [p] down to
R by a modulo r operation. This of course preserves in-
dependence, but the family is now only close to uniform.
Specifically, the maximum load ᾱ for this family is in the
range [α; (1 + n/p)α]. By choosing p much larger than n we
can make ᾱ arbitrarily close to α.

A recently proposed k-wise independent family of Tho-
rup and Zhang [14] has uniformly distributed function val-
ues in [r], and thus ᾱ = α. From a theoretical perspective
(ignoring constant factors) it is inferior to Siegel’s highly in-
dependent family [12], since the evaluation time depends on
k and the space usage is the same (though the dependence
of ǫ is better). We mention it here because it is the first
construction that makes k-wise independence truly compet-
itive with popular heuristics, for small k > 3, in terms of
evaluation time. In practice, the space usage can be kept so
small that it does not matter. The construction for 4-wise
independence has been shown to be particularly efficient.
Though this is not stated in [14], it is not hard to verify that
the same construction in fact gives 5-wise independence, and
thus our analysis will apply.

2.3 A probabilistic lemma
Here we state a lemma that is essential for our upper

bound results, described in sections 4 and 5. It gives an
upper bound on the probability that an interval around a
particular hash function value contains the hash function
values of “many” keys. The proof is similar to the proof
of [8, Lemma 4.19].

Lemma 1. Let S ⊆ U be a set of size n, and H a 5-wise
independent family of functions from U to R with maximum
load at most ᾱ < 1. If h is chosen uniformly at random from
H, then for any Q ⊂ R of size q, and any fixed x ∈ U \ S,

Pr{|h(S) ∩m (h(x) + Q)| ≥ ᾱq + d} <
3(ᾱq)2 + ᾱq

d4
.

Proof. We will show a stronger statement, namely that
for any ρ ∈ R the bound holds if we choose h uniformly
at random from the subfamily Hρ = {h ∈ H | h(x) = ρ}.
Notice that Hρ is 4-wise independent on U\{x}, and that the
distribution of function values is identical to the distribution
when h is chosen from H.

Let pi = Pr{h(xi) ∈ (h(x)+Q)}, and consider the random
variables

Xi =



1 − pi, if h(xi) ∈ h(x) + Q
−pi, otherwise

.

Let X =
P

i Xi and observe that

|h(S) ∩m (h(x) + Q)| = X +
X

i

pi ≤ X + ᾱq .

The last inequality above is by the definition of maximum
load. So to prove the lemma it suffices to bound Pr{X ≥ d}.
We will use the 4th moment inequality

Pr{X ≥ d} ≤ E(X4)/d4 .

Clearly, E(Xi) = 0 for any i, and the variables X1, . . . , Xn

are 4-wise independent. Therefore we have E(Xi1Xi2Xi3Xi4) =
0 unless i1 = i2 = i3 = i4 or (i1, i2, i3, i4) contains 2 num-
bers, both of them exactly twice. This means that

E(X4) =
X

1≤i1,i2,i3,i4≤n

E(Xi1Xi2Xi3Xi4)

≤
X

1≤i≤n

E(X4
i) +

X

1≤i<j≤n

`

4
2

´

E(X2
i)E(X2

j).

The first sum can be bounded as follows:
X

i

E(X4
i) =

X

i

(pi(1 − pi)
4 + (1 − pi)p

4
i)

=
X

i

pi(1 − pi)((1 − pi)
3 + p3

i)

<
X

i

pi ≤ ᾱq .

The second sum is:
X

1≤i<j≤n

6(pi(1 − pi))(pj(1 − pj)) < 3
X

1≤i,j≤n

pipj

= 3(
X

i

pi)
2 ≤ 3(ᾱq)2 .

In conclusion we have

Pr{X ≥ d} ≤ E(X4)/d4 <
3(ᾱq)2 + ᾱq

d4
,

finishing the proof.

3. PAIRWISE INDEPENDENCE
In this section we show that pairwise independence is not

sufficient to ensure good performance for linear probing:
Logarithmic time per operation is needed for a worst-case
set. This complements our upper bounds for 5-wise (and
higher) independence. We will consider two pairwise inde-
pendent families: The first one is a very commonly used hash
function family. The latter family is similar to the first, ex-
cept that we have ensured function values to be uniformly
distributed in R. To lower bound the cost of linear probing
we use the following lemma.

Lemma 2. Suppose that n keys are inserted in a linear
probing hash table of size r with probe sequences starting
at i1, . . . , in, respectively. Further, suppose that I1, . . . , Iℓ is
any set of intervals (modulo r) such that we have the multiset
equality

S

j{ij} =
S

j Ij . Then the total number of steps to
perform the insertions is at least

X

1≤j1<j2≤ℓ

|Ij1 ∩ Ij2 |2/2 .

Proof. We proceed by induction on ℓ. Since the number
of insertion steps is independent of the order of insertions,
we may assume that the insertions corresponding to Iℓ occur
last. By the induction hypothesis, the total number of steps
to do all preceding insertions is at least

X

1≤j1<j2≤ℓ−1

|Ij1 ∩ Ij2 |2/2 .

Let Sj denote the set of keys corresponding to Ij . For any
j < ℓ, and any x ∈ Sℓ with probe sequence starting in
Ij ∩ Iℓ, the insertion of x will pass all keys of Sj with probe

sequences starting in Ij ∩ Iℓ that have hash value h(x) or
above (mod r). This means that at least |Ij ∩ Iℓ|2/2 steps
are used during the insertion of the keys of Sℓ to pass loca-
tions occupied by keys of Sj . Summing over all j < ℓ and
adding to the bound for the preceding insertions finishes the
induction step.

3.1 Linear congruential hash functions
We first consider the following family of functions, intro-

duced by Carter and Wegman [2] as a first example of a
universal family of hash functions:

H(p, r) = {x 7→ ((ax + b) mod p) mod r |
0 < a < p, 0 ≤ b < p}

where p is any prime number and r ≤ p is any integer.
Functions in H(p, r) map integers of [p] to [r].

Theorem 1. For r = ⌈p/2⌉ there exists a set S ⊆ [p],
|S| ≤ r/2, such that the expected cost of inserting the ele-
ments of S in a linear probing hash table of size r using a
hash function chosen uniformly at random from H(p, r) is
Ω(r log r).

Proof. We give a randomized construction of S, and
show that when choosing h at random from H(p, r) the ex-
pected total insertion cost for the keys of S is Ω(r log r).
This implies the existence of a fixed set S with at least
the same expectation for random h ∈ H(p, r). Specifi-
cally, we subdivide [p] into 8 intervals U1, . . . , U8, such that
S

i Ui = [p] and r/4 ≥ |Ui| ≥ r/4 − 1 for i = 1, . . . , 8, and
let S be the union of two of the sets U1, . . . , U8 chosen at
random (without replacement). Note that |S| ≤ r/2, as
required.

Consider a particular function h ∈ H(p, r) and the asso-

ciated values of a and b. Let ĥ(x) = (ax+ b) mod p, and let
m denote the unique integer in [p] such that am mod p = 1

(i.e., m = a−1 in GF(p)). Since ĥ is a permutation on [p],

the sets ĥ(Ui), i = 1, . . . , 8, are disjoint. We note that for

any x, ĥ(x + m) = (ĥ(x) + 1) mod p. Thus, for any k,

ĥ({x, x + m,x + 2m, . . . , x + km}) is an interval (modulo p)

of length k+1. This implies that for all i there exists a set L̂i

of m disjoint intervals such that ĥ(Ui) =
S

I∈L̂i
I . Similarly,

for all i there exists a set Li of at most m + 1 intervals (not
necessarily disjoint) such that we have the multiset equality

h(Ui) =
S

I∈Li
I . Since all intervals in

S

i L̂i are disjoint, an

interval in
S

i Li can intersect at most two other intervals in
S

i Li. We now consider two cases:

1. Suppose there is some i such that
X

I1,I2∈Li,I1 6=I2

|I1 ∩ I2| ≥ r/16 .

Then with constant probability Ui ⊆ S, and we ap-
ply the bound of Lemma 2. The sum is minimized
if all O(m) nonzero intersections have the same size,
Ω(r/m). Thus Lemma 2 implies that the number of
insertion steps is Ω(r2/m).

2. Now suppose that for all i,
X

I1,I2∈Li,I1 6=I2

|I1 ∩ I2| < r/16 .

Note that any value in [r−1] is contained in exactly two
intervals of

S

i Li, and by the assumption at most half
occur in two intervals of Li for some i. Thus there exist
i1, i2, i1 6= i2, such that |h(Ui1)∩h(Ui2)| = Ω(r). With
constant probability we have S = Ui1 ∪ Ui2 . We now
apply Lemma 2. Consider just the terms in the sum of
the form |I1 ∩ I2|2/2, where I1 ∈ Li1 and I2 ∈ Li2 . As
before, this sum is minimized if all O(m) intersections
have the same size, Ω(r/m), and we derive an Ω(r2/m)
lower bound on the number of insertion steps.

For a random h ∈ H(p, r), m is uniformly distributed in
{1, . . . , p} (the map a 7→ a−1 is a permutation of {1, . . . , p}).
Therefore, the expected total insertion cost is:

Ω

1

p

p
X

m=1

r2/m

!

= Ω

„

r2

p
log p

«

= Ω(r log r) .

3.2 Example with uniform distribution
One might wonder if the lower bound shown in the pre-

vious section also holds if the hash function values are uni-
formly distributed in R. We slightly modify H(p, r) to re-
main pairwise independent and also have uniformly distri-
buted function values. Let p̂ = ⌈p/r⌉ r, and define a function
g as follows: g(y, ŷ) = ŷ if ŷ ≥ p, and g(y, ŷ) = y otherwise.
For a vector v let vi denote the i + 1st component (indexes
starting with zero). We define:

H∗(p, r) = {x 7→ g((ax + b) mod p, vx) mod r |
0 ≤ a < p, 0 ≤ b < p, v ∈ [p̂]p}

Lemma 3 (Pairwise independence). For any pair of
distinct values x1, x2 ∈ [p], and any y1, y2 ∈ [r], if h is
chosen uniformly at random from H∗(p, r), then

Pr{h(x1) = y1 ∧ h(x2) = y2} = 1/r2 .

Proof. We will show something stronger than claimed,
namely that the family

H∗∗ = {x 7→ g((ax + b) mod p, vx) |
0 ≤ a < p, 0 ≤ b < p, v ∈ [p̂]p}

is pairwise independent and has function values uniformly
distributed in [p̂]. Since r divides p̂ this will imply the
lemma. Pick any pair of distinct values x1, x2 ∈ [p], and
consider a random function h ∈ H∗∗. Clearly, vx1

and vx2

are uniform in [p̂] and independent. Also, it follows by stan-
dard arguments [2] that (ax1+b) mod p and (ax2+b) mod p
are uniform in [p] and independent. We can think of the def-
inition of h(x) as follows: The value is vx unless vx ∈ [p], in
which case we substitute vx for another random value in [p],
namely (ax+ b) mod p. It follows that hash function values
are uniformly distributed, and pairwise independent.

Corollary 1. Theorem 1 holds also if we replace H(p, r)
by H∗(p, r). In particular, pairwise independence is not a
sufficient condition for linear probing to have expected con-
stant cost per operation.

Proof. Consider the parameters a, b, and v of a random
function in H∗(p, r). Since r = ⌈p/2⌉ we have p̂ = p + 1,
and (p/p̂)p > 1/4. Therefore, with constant probability it
holds that a 6= 0 and v ∈ [p]p. Restricted to functions

satisfying this, the family H∗(p, r) is identical to H(p, r).
Thus, the lower bound carries over (with a smaller constant).
By Lemma 3, H∗ is pairwise independent with uniformly
distributed function values.

We remark that the lower bound is tight. A correspond-
ing O(n log n) upper bound can be shown by applying the
analysis of Section 4.1 and using Chebychev’s inequality to
bound the probability of a fully loaded interval, rather than
using the 4th moment inequality as in Lemma 1.

4. 5-WISE INDEPENDENCE
We want to bound the cost of a given operation (insertion,

deletion, or lookup of a key x) performed when the hash
table contains the set S of keys. It is well known that for
linear probing, the set P of occupied table positions depends
only on the set S and the hash function, independently of the
sequence of insertions and deletions performed. An upper
bound for the cost of any operation on x is

O(1 + max{l | h(x) + [l] ⊆ P}) .

This is because the cost is bounded by the distance from
h(x) to the next unoccupied position. To avoid two similar
calculations for the cases x ∈ S and x 6∈ S we will consider
the set S′ = S∪{x} and the corresponding set P ′ of occupied
table positions. We first show a lemma which intuitively
says that if the operation on the key x goes on for at least
l steps, then there are either “many” keys hashing to the
interval h(x) + [l], or there are “many” keys that hash to
some interval having h(x) as its right endpoint.

Lemma 4. For any l > 0 and ᾱ ∈ (0, 1), if h(x)+[l] ⊆ P ′

and l′ = max{ℓ | h(x) − [ℓ] ⊆ P ′} then at least one of the
following holds:

1. |h(S′) ∩m (h(x) + [l])| ≥ 1+ᾱ
2

l − 1, or

2. |h(S′) ∩m (h(x) − [l′])| ≥ l′ + 1−ᾱ
2

l .

Proof. Suppose that |h(S′) ∩m (h(x) + [l])| < 1+ᾱ
2

l − 1.
Now, fix any way of placing the keys in the hash table, e.g.,
suppose that keys are inserted in sorted order. Consider the
set S∗ ⊆ S′ of keys stored in the interval I = (h(x) − [l′]) ∪
(h(x) + [l]). By the choice of l′ there must be an empty
position to the left of I , so h(S∗) ⊆ I . This means:

|h(S′) ∩m (h(x) − [l′])| ≥ |h(S∗) ∩m (h(x) − [l′])|
≥ |S∗| − |h(S∗) ∩m (h(x) + [l])|
> |I | − (1+ᾱ

2
l − 1)

= l′ + 1−ᾱ
2

l .

Theorem 2. Consider any sequence of operations (inser-
tions, deletions, and lookups) in a linear probing hash table
where the hash function h used has been chosen uniformly
at random from a 5-wise independent family of functions H.
Let n and ᾱ < 1 denote, respectively, the maximum num-
ber of keys in the table during a particular operation and the
corresponding maximum load. Then the expected cost of that
operation is O(1+(1−ᾱ)−3). As a consequence, the expected
average cost of successful lookups is O(1 + (1 − ᾱ)−2).

Proof. We refer to x, S′, and P ′ as defined previously
in this section. As argued above, the expected cost of the
operation is

O

1 +
X

l>0

Pr{h(x) + [l] ⊆ P ′}
!

.

Let l0 = 6
(1−ᾱ)3

. For l ≤ l0 we use the trivial upper bound

Pr{h(x) + [l] ⊆ P ′} ≤ 1. In the following we consider the
case l > l0.

Let Aℓ be the event that |h(S′)∩m (h(x)+[ℓ])| ≥ 1+ᾱ
2

ℓ−1,
and let A′

ℓ be the event that |h(S′) ∩m (h(x) − [ℓ])| ≥ ℓ.
Notice that if the second inequality of Lemma 4 holds then
A′

l′ , . . . , A
′
l′+⌈ 1−ᾱ

2
l⌉ hold. Consequently, if

l′ div (⌈ 1−ᾱ
2

l⌉ + 1) = k ,

then A′
(k+1)⌈ 1−ᾱ

2
l⌉ holds. Combining this observation with

Lemma 4 shows that for any l such that h(x) + [l] ⊆ P ′ the
following event holds:

Al ∪
“

[

k>0

A′
k⌈ 1−ᾱ

2
l⌉

”

.

Hence,

X

l>l0

Pr{h(x)+[l] ⊆ P ′} ≤
X

l>l0

`

Pr(Al)+
X

k>0

Pr(A′
k⌈ 1−ᾱ

2
l⌉)
´

.

The event Al implies |h(S′\{x})∩m (h(x)+ [l])| ≥ 1+ᾱ
2

l− 2.
Thus, using Lemma 1 on S′\{x} we have

Pr(Al) ≤ Pr{|h(S′\{x}) ∩m (h(x) + [l])| ≥ ᾱl + (1−ᾱ
2

l − 2)}

<
3(ᾱl)2 + ᾱl

(1−ᾱ
2

l − 2)4

= O((1 − ᾱ)−4l−2) .

In the last relation we used the fact that l > 6
(1−ᾱ)

. Using

the inequality Pr(A′
ℓ) < O((1−ᾱ)−4ℓ−2), again derived from

Lemma 1, we get

X

k>0

Pr(A′
k⌈1−ᾱ

2
l⌉) <

X

k>0

O((1 − ᾱ)−4(k 1−ᾱ
2

l)−2)

= O((1 − ᾱ)−6l−2) .

Finally,

X

l>l0

Pr{h(x) + [l] ⊆ P ′} <
X

l>l0

O((1 − ᾱ)−6l−2)

= O((1 − ᾱ)−3) .

For the average successful lookup cost, notice that the
n keys in the hash table were inserted (in some order) at
maximum loads ᾱi/n, for i = 1, . . . , n, so the expected total
insertion cost of these keys is

O

n
X

i=1

1 + (1 − ᾱi/n)−3

!

= O(n + (1 − ᾱ)−2n) .

Observing that the total insertion cost equals the total cost
of looking up all keys, the claim follows.

4.1 A bound with explicit constant factor
In earlier analyses of linear probing it was common to

consider the number of probes into the table made during
an operation. When the number of probes is analyzed, and
not the number of machine instructions executed, it makes
sense to be more precise and compute the constant factor
involved. The analysis in the previous section hides a rather
large constant factor. We will use a slightly different proof
technique to obtain a better bound on the average success-
ful search cost. This proof technique will be used again in
section 5.

We estimate the total expected number of probes made
by a sequence of n insertions into an empty table of size r.
From this we can easily derive a bound on the number of
probes made by a successful search of a random element in
the set. Our bounds show that the expected probe count is
not big, for moderate values of ᾱ, although definitely higher
than in the case of truly random functions.

The number of probes made during an insertion does not
depend on the order of insertions — or equivalently, on the
policy of placing elements being inserted. We assume that
the following policy is in effect: if x is the new element
to be inserted, place x into the first slot h(x) + i that is
either empty or contains an element x′ such that h(x′) /∈
h(x) + [i + 1]. If x is placed into a slot previously occupied
by x′ then the probe sequence continues as if x′ is being
inserted. The entire procedure terminates when an empty
slot is found.

Theorem 3. Let H be a 5-wise independent family of
functions which map U to R. When linear probing is used
with a hash function chosen uniformly at random from H,
the expected total number of probes made by a sequence of n
insertions into an empty table is less than n(1 + T (ᾱ)).

Proof. For every xi ∈ S, we define di to be the dis-
placement of xi, i.e., the number such that xi resides in slot
(h(xi) + di) mod r after all keys have been inserted. The
total number of probes made over all insertions is equal to
Pn

i=1(1 + di). From the way elements are inserted, we con-
clude that, for 1 ≤ i ≤ n and 1 ≤ l ≤ di, every interval
h(xi)+ [l] is fully loaded, meaning that at least l elements of
S \ {xi} hash into it. Let Ail be the event that the interval
of slots h(xi) + [l] is fully loaded. Then,

E(di) =

r
X

k=1

Pr {di ≥ k}

≤
r
X

k=1

Pr

k
\

l=1

Ail

!

≤
⌊lg r⌋
X

j=0

2j · Pr(Ai 2j) .

An upper bound on Pr(Ai 2j) can be derived from Lemma
1. However, for small lengths (and ᾱ not small) the bound
is useless, so then we will simply use the trivial upper bound

of 1. Let K = 3ᾱ2

(1−ᾱ)4
. We first consider the case K ≥ 1.

Denoting j∗ =
˚

1
2

lg K
ˇ

we have

E(di) ≤ 2j∗ − 1 +

lg r
X

j=j∗

2j

„

K

22j
+

K

3ᾱ · 23j

«

= 2j∗ − 1 + K

lg r
X

j=j∗

2−j +
K

3ᾱ

lg r
X

j=j∗

2−2j

< 2j∗ − 1 +
K

2j∗

1

1 − 1
2

+
K

3ᾱ · 4j∗

1

1 − 1
4

≤
√

K · 21−frac(lg
√

K) − 1 + 2
√

K · 2−(1−frac(lg
√

K))

+ 4
9ᾱ

≤ 3
√

K + 4
9ᾱ

− 1 .

The last inequality is true because 2t + 2 · 2−t ≤ 3, for
t ∈ [0, 1]. The assumption that K ≥ 1 implies that ᾱ > 0.29,
but we decide to use the obtained bound for ᾱ ≥ 1

3
. Thus,

we may replace 4
9ᾱ

− 1 with the upper bound of 1
3
.

Doing an easier calculation without splitting of the sum
at index j∗ gives E(di) < K(2 + 4

9ᾱ
). When ᾱ < 1

3
, we may

replace K(2 + 4
9ᾱ

) with the upper bound of 2.5ᾱ
(1−ᾱ)4

.

5. BLOCKED PROBING
In this section we propose and analyze a family of open

addressing methods, containing among other a variant of
bidirectional linear probing. The expected probe count for
any single operation is within a constant factor from the
corresponding value in linear probing with a fully random
hash function. For successful searches we do a more precise
analysis. It is shown that the expected number of probes
made during a search for a random element of S is less than
1 + 2

1−ᾱ
ᾱ
α
. The bounds for single operations require a 5-

wise independent family of functions. The bound for average
successful search requires 4-wise independence.

Suppose that keys are hashed into a table of size r by a
function h. For simplicity we assume that r is a power of
two. Let V i

j = {j, j + 1, . . . , j + 2i − 1} where j is assumed

to be a multiple of 2i. The intervals V i
j may be thought of

as sets of references to slots in the hash table. In a search
for key x, intervals V i

j that enclose h(x) are examined in the

order of increasing i. More precisely, V 0
h(x) is examined first;

if the search did not finish after traversing V i
h(x)⊖2i , then

the search proceeds in the untraversed half of V i+1
h(x)⊖2i+1 .

The search stops after traversal of an interval if any of the
following three cases hold:

a) key x was found,

b) the interval contained empty slot(s),

c) the interval contained key(s) whose hash value does
not belong to the interval.

In case (a) the search may obviously stop immediately on
discovery of x — there is no need to traverse through the
rest of the interval. In cases (b) and (c) we will be able to
conclude that x is not in the hash table.

Traversal of unexamined halves of intervals V i
j may take

different concrete forms — the only requirement is that every
slot is probed exactly once. From a practical point of view,
a good choice is to probe slots sequentially in a way that
makes the scheme a variant of bidirectional linear probing.
This concrete scheme defines a probe sequence that in probe
numbers 2i to 2i+1 − 1 inspects either slots

(h(x)⊖ 2i + 2i, h(x)⊖ 2i + 2i + 1, . . . , h(x)⊖ 2i + 2i+1 − 1)

or (h(x) ⊖ 2i − 1, h(x) ⊖ 2i − 2, . . . , h(x) ⊖ 2i − 2i)

depending on whether h(x) mod 2i = h(x) mod 2i+1 or not.
A different probe sequence that falls in this class of methods,
but is not sequential, is (x, j) 7→ h(x) xor j, with j starting
from 0.

Insertions. Until key x which is being inserted is placed
in a slot, the same probe sequence is followed as in a search
for x. However, x may be placed in a non-empty slot if its
hash value is closer to the slot number in a special metric
which we will now define. Let d(y1, y2) = min{i | y2 ∈
V i

y1⊖2i}. The value of d(y1, y2) is equal to the position of
the most significant bit in which y1 and y2 differ. If during
insertion of x we encounter a slot y containing key x′ then
key x is put into slot y if d(h(x), y) < d(h(x′), y). In an
implementation there is no need to evaluate d(h(x), y) values
every time. We can keep track of what interval V i

h(x)⊖2i

is being traversed at the moment and check whether h(x′)
belongs to that interval.

When x is placed in slot y which was previously occupied
by x′, a new slot for x′ has to be found. Let i = d(h(x′), y).
The procedure now continues as if x′ is being inserted and
we are starting with traversal of V i

h(x′)⊖2i\V i−1
h(x′)⊖2i−1 . If the

variant of bidirectional linear probing is used, the traversal
may start from position y, which may matter in practice.

Deletions. After removal of a key we have to check if
the new empty slot can be used to bring some keys closer
to their hash values, in terms of the metric d. Let x be
the removed key, y be the slot in which it resided, and
i = d(h(x), y). There is no need to examine V i−1

h(x)⊖2i−1 .

If V i
h(x)⊖2i \V i−1

h(x)⊖2i−1 contains another empty slot then the

procedure does not continue in wider intervals. If it contin-
ues and an element gets repositioned then the procedure is
recursively applied starting from the new empty slot.

It is easy to formally check that appropriate invariant
holds and that the above described set of procedures works
correctly. We leave this to the reader.

5.1 Analysis
We analyze the performance of operations on a hash ta-

ble of size r when blocked probing is used. Suppose that
the hash table stores an arbitrary fixed set of n elements,
and let ᾱ denote the maximum load of H on sets of size
n. Let CU

ᾱ , CI
ᾱ, CD

ᾱ , and CS
ᾱ be the random variables that

represent, respectively: the number of probes made dur-
ing an unsuccessful search for a fixed key, the number of
probes made during an insertion of a fixed key, the num-
ber of probes made during a deletion of a fixed key, and
the number of probes made during a successful search for
a random element from the set. In the above notation we
did not explicitly include the fixed set and fixed elements
that are used in the operations – they have to be implied by
the context. The upper bounds on the expectations of CΞ

ᾱ

variables, which are given by the following theorem, do not
depend on choices of those elements.

Theorem 4. Let H be a 5-wise independent family of
functions which map U to R. For a maximum load of ᾱ < 1,
blocked probing with a hash function chosen uniformly at
random from H provides the following expectations:

E(CU
ᾱ) < 1 + T (ᾱ),

E(CI
ᾱ) < 1 + 2T (ᾱ),

E(CD
ᾱ) < 1 + 2T (ᾱ) .

Proof. Denote by x the fixed element from U \S that is
being inserted or searched (unsuccessfully). Let C̄U

ᾱ be the
random variable that takes value 2i when 2i−1 < CU

ᾱ ≤ 2i,
0 ≤ i ≤ lg r. We can write C̄U

ᾱ = 1 +
Plg r

i=1 2i−1Ti, where
Ti is an indicator variable whose value is 1 when at least
2i−1 + 1 probes are made during the search. Let Aj be
the event that the interval of slots V j

h(x)⊖2j is fully loaded,

meaning that at least 2j elements of S are hashed into the
interval. If Ti = 1 then Ai−1 holds, so we have:

E(C̄U
ᾱ) ≤ 1 +

lg r
X

i=1

2i−1Pr(Ai−1) .

The sum
Plg r

i=0 2iPr(Ai) appeared in the proof of Theorem
3, so we reuse the upper bound found there to conclude that
E(CU

ᾱ) < 1 + T (ᾱ).
We now move on to analyzing insertions. Let C̄I

ᾱ be the
random variable that takes value 2i when 2i−1 < CI

ᾱ ≤ 2i,
0 ≤ i ≤ lg r. The variable CU

ᾱ gives us the slot where x is
placed, but we have to consider possible movements of other
elements. If x is placed into a slot previously occupied by
key x′ from a “neighboring” interval V i+1

h(x)⊖2i+1 \ V i
h(x)⊖2i ,

then as many as 2i probes may be necessary to find a place
for x′ in V i

h(x)⊖2i , if there is one. If V i+1
h(x)⊖2i+1 is fully loaded,

then as many as 2i+1 additional probes may be needed to
find a place within V i+2

h(x)⊖2i+2 \ V i+1
h(x)⊖2i+1 , and so on. In

general — and taking into account all repositioned elements
— we use the following accounting to get an overestimate of
E(C̄I

ᾱ): For every fully loaded interval V i
h(x)⊖2i we charge

2i probes, and for every fully loaded neighboring interval
V i+1

h(x)⊖2i+1 \ V i
h(x)⊖2i we also charge 2i probes. The proba-

bility of a neighboring interval of length 2i being full is equal
to Pr(Ai). As a result,

E(C̄I
ᾱ) ≤ 1 +

lg r−1
X

i=0

2i · 2Pr(Ai) < 1 + 2T (ᾱ) .

The analysis of deletions is analogous.

For higher values of ᾱ, the dominant term in the upper
bounds is O((1 − ᾱ)−2). The constants factors in front of
term (1 − ᾱ)−2 are relatively high compared to standard
linear probing with fully random hash functions. This is in
part due to approximative nature of the proof of Theorem 4,
and in part due to tail bounds that we use, which are weaker
than those for fully independent families. In the fully inde-
pendent case, the probability that an interval of length q is
fully loaded is less than eq(1−α+ln α), according to Chernoff-
Hoeffding bounds [3, 6]. Plugging this bound into the proof
of Theorem 4 would give, e.g.,

E(CU
α) < 1 +

e1−α+ln α

ln 2 · |1 − α + ln α| . (1)

For α close to 1, a good upper bound on (1) is 1 + 2
ln 2

(1 −
α)−2. The constant factor here is ≈ 2.88, as opposed to
≈ 5.2 from the statement of Theorem 4. As α gets smaller,
the bound in (1) gets further below 1 + 2

ln 2
(1 − α)−2.

5.2 Analysis of successful searches
As before, we assume that the function h is chosen uni-

formly at random from H. For a subset Q of R, let Xi be

the indicator random variable that has value 1 iff h(xi) ∈ Q,
1 ≤ i ≤ n. The variable X =

Pn
i=1 Xi counts the number

of elements that are mapped to Q. We introduce a random
variable that counts the number of elements that have over-
flowed on Q. Define Y = max{X −q, 0}, where q = |Q|. We
will find an upper bound on E(Y), such that it is expressed
only in terms of q and ᾱH. Denote such a bound by M ᾱ

q . It
is clear that

E(CS
ᾱ) ≤ 1 +

1

n

lg r−1
X

l=0

2l r

2l
M ᾱ

2l = 1 +
1

α

lg r−1
X

l=0

M ᾱ
2l .

We are starting the analysis of E(Y), for an arbitrary fixed
set Q. The value of E(Y) is

Pn−q
j=1 j · Pr{X = q + j}. A

bound on E(Y) can be obtained as the optimal value of an
optimization problem, which we will introduce. We denote
E(X) shortly by µ. Let variables pi, 0 ≤ i ≤ n have domain
[0, 1]. Define the following optimization problem in variables
p0, . . . , pn:

maximize

n−q
X

j=1

j · pq+j

subject to constraints:
n
X

i=0

pi = 1 ,

⌈µ⌉−1
X

i=0

(µ − i)pi =
n
X

i=⌊µ⌋+1

(i − µ)pi ,

n
X

i=0

(µ − i)kpi = Dk .

If we choose an even k ≥ 2, and set Dk to be an upper
bound on the value of the kth central moment of X, then the
optimal value of the objective function is an upper bound
on E(Y). Remark that in an optimal solution pi = 0 for
⌈µ⌉ ≤ i ≤ q. We will actually not solve the above prob-
lem, but its relaxation. We introduce variables di, i ∈ I =
{−⌈µ⌉, . . . ,−2,−1, 1, 2, . . . n − q}. For i ∈ {−⌈µ⌉, . . . ,−1}
the domain of variables di is (0, µ]; for i ∈ {1, . . . n − q} the
domain of variables di is (q−µ, n]. The variables represent-
ing probabilities are still denoted by pi, but the index set is
now I . Define the optimization problem Π over all variables
pi, di as:

maximize

n−q
X

j=1

pj(dj − (q − µ))

subject to constraints:
X

i∈I

pi = 1 , (2)

⌈µ⌉
X

i=−1

dipi =

n−q
X

i=1

dipi , (3)

X

i∈I

dk
i pi = Dk . (4)

The optimal value of the objective function for problem Π is
not smaller than the optimal value in the original problem.

Lemma 5. Let (p̄, d̄) be an optimal solution to problem Π
such that d̄i 6= d̄j for 0 < i < j, and d̄i 6= d̄j for 0 > i > j.

Then only one value among p̄1, . . . , p̄n−q is not equal to 0,
and only one value among p̄−1, . . . , p̄−⌈µ⌉ is not equal to 0.

Proof. We will prove the claims for i > 0 and i < 0
separately. Suppose the contrary, that there are two non-
zero values among p̄1, . . . , p̄n−q. W.l.o.g. we may assume
that p̄1 > 0 and p̄2 > 0. Define the function f(d1, d2) =
p̄1(d1 − (q − µ)) + p̄2(d2 − (q − µ)) over d1, d2 ≥ 0. We are
interested in finding the maximum of function f subject to
constraint p̄1d

k
1 + p̄2d

k
2 − D = 0, where D = p̄1d̄

k
1 + p̄2d̄

k
2 .

According to the method of Lagrange multipliers, the only
point in the interior of the domain that is a candidate for

an extreme point is (d̂, d̂), where d̂ = k

q

D
p̄1+p̄2

. We can-

not establish the character of the point directly through an
appropriate quadratic form, because the required forms eval-
uate to zero (the form should be positive definite or nega-
tive definite to establish the local minimum or maximum,
respectively). However, by comparing f(d̂, d̂) to the val-

ues of f at boundary points (k
p

D/p̄1, 0) and (0, k
p

D/p̄2),
we find that the maximum is reached in the interior of the
domain and it must be at point (d̂, d̂). It is not hard to

show that d̂ ∈ (q − µ, n], by looking at the set determined
by equation p̄1d

k
1 + p̄2d

k
2 − D = 0 and using the fact that

(d̄1, d̄2) ∈ (q − µ, n] × (q − µ, n].

We construct a new solution (p̃, d̃) to problem Π in two

phases. First, set p̃i = p̄i and d̃i = d̄i for i /∈ {1, 2}, set

p̃2 = d̃2 = 0, d̃1 = d̂ and p̃1 = p̄1d̄1+p̄2d̄2

d̂
. From (d̂, d̂) being

the point of maximum of f , it follows that

p̄1d̄1 + p̄2d̄2

d̂
< p̄1 + p̄2 .

Now (p̃, d̃) exactly satisfies (3) and it satisfies inequality con-
ditions corresponding to (2) and (4). Already now, the value
of the objective function is higher than the value at (p̄, d̄).
It increases further when we increase values of p̃1 and p̃−1

in a way that satisfies all the conditions with equalities. We
reached a contradiction, meaning that (p̄, d̄) cannot have two
non-zero values among p̄1, . . . , p̄n−q.

Suppose that there are two non-zero values among p̄−1,. . .,
p̄−⌈µ⌉. W.l.o.g. we may assume that p̄−1 > 0 and p̄−2 > 0.
To reach a contradiction we use an argument that is in some
way dual to the argument for the first part. Define the
function g(d−1, d−2) = p̄−1d

k
−1 + p̄−2d

k
−2. Now we are in-

terested in finding the minimum of g subject to constraint
p̄−1d−1 + p̄−2d−2 − (p̄−1d̄−1 + p̄−2d̄−2) = 0. The proof con-
tinues similarly to the first part.

Lemma 6. Let OPT be the optimal value of the objective
function for problem Π. Then OPT < 1

2
k
√

Dk, and also

OPT <

(

1
2

k−1

k k
√

Dk − 1
2
(q − µ),

Dk(1− 1
k

)k

(q−µ)k ≥ 1
2

Dk

(q−µ)k−1 ((1 − 1
k
)k−1 − (1 − 1

k
)k), otherwise

Proof. According to Lemma 5, an optimal solution to
problem Π can be obtained from the following simplified
problem:

maximize p1(d1 − (q − µ))

subject to constraints:

p1d1 = (1 − p1)d−1 ,

p1d
k
1 + (1 − p1)d

k
−1 = Dk .

Eliminating d−1 yields the constraint dk
1(p1 +

pk
1

(1−p1)k−1) =

Dk. Expressing d1 from this constraint shows that the ob-
jective function is equivalent to

f(p1) =
k
√

Dk

k

q

p1−k
1 + (1 − p1)1−k

− p1(q − µ)

The value of the first term is symmetrical around the point 1
2
.

Therefore, the maximum of f is reached in the interval (0, 1
2
].

By analyzing only the first term, we get a simple upper
bound of 1

2
k
√

Dk. To get the other bound we look at the
function

f̄(p1) = k
√

Dk · p1−1/k
1 − p1(q − µ) ,

which satisfies f < f̄ . Analyzing f̄ ′ we easily find the max-
imum of f̄(p1) over p1 ∈ (0, 1

2
].

Corollary 2. Suppose that H is 4-wise independent. De-
fine

M ᾱ
q =

8

>

>

>

<

>

>

>

:

1
2

√
ᾱq , If ᾱ

(1−ᾱ)2q
≥ (

√
2 + 1)2

1√
2

√
ᾱq − 1

2
q(1 − ᾱ) , If 2 ≤ ᾱ

(1−ᾱ)2q
< (

√
2 + 1)2

1
4

ᾱ
1−ᾱ

, If 1√
2
≤ ᾱ

(1−ᾱ)2q
< 2

0.11 · 3ᾱ2q+ᾱ
(1−ᾱ)3q2 , If ᾱ

(1−ᾱ)2q
< 1√

2

It holds that E(Y) < M ᾱ
q .

Proof. For the first three cases we used k = 2, and for
the fourth case k = 4 was used. The constants in problem Π
were substituted as: µ = ᾱq, D2 = ᾱq, and D4 = 3ᾱ2q2+ᾱq.
The bound on the fourth central moment is proved very
similarly to the proof of of Lemma 1. The bound on the
variance is easier to prove.

The analysis is finalized with the following theorem.

Theorem 5. Let H be a 4-wise independent family of
functions which map U to R. When blocked probing is used
with a hash function chosen uniformly at random from H,
then

E(CS
ᾱ) < 1 + ᾱ

α
·

8

<

:

2
1−ᾱ

, 0.5 ≤ ᾱ
1.1
1−ᾱ

, 0.3 < ᾱ < 0.5
0.85
1−ᾱ

, ᾱ ≤ 0.3
.

Proof. As stated at the beginning of this section, E(CS
ᾱ)

is upper-bounded by

1 +
1

α

lg r−1
X

l=0

M ᾱ
2l .

Now that we have M ᾱ
q values, we are only left to carry out

summation of
P

l M ᾱ
2l . We split the sum into four parts. The

splitting indexes are set as follows: l1 =
¨

lg ᾱ

(
√

2+1)2(1−ᾱ)2

˝

,

l2 =
¨

lg ᾱ
2(1−ᾱ)2

˝

, l3 =
¨

lg
√

2ᾱ
(1−ᾱ)2

˝

. Some of the indices may

be smaller than 0, in which case the sum is split into fewer
parts. For tighter bounding, we will also need the following
values: t1 = frac

`

lg ᾱ

(
√

2+1)2(1−ᾱ)2

´

, t2 = frac
`

lg ᾱ
2(1−ᾱ)2

´

,

and t3 = frac
`

lg
√

2ᾱ
(1−ᾱ)2

´

.

Suppose first that l1 ≥ 0. Simple calculations yield the
following four inequalities:

l1
X

l=0

M ᾱ
2l <

1√
2

ᾱ

1 − ᾱ
2−t1/2 ,

l2
X

l=l1+1

M ᾱ
2l ≤ ᾱ

1 − ᾱ

“

`

1 +
1√
2

´

2−t2/2 − 2−t1/2 − 1

2
2−t2 +

+
1

(
√

2 + 1)2
2−t1

”

,

l3
X

l=l2+1

M ᾱ
2l ≤ 1

4

ᾱ

1 − ᾱ
(l3 − l2) ,

∞
X

l=l3+1

M ᾱ
2l ≤ 0.24

ᾱ

1 − ᾱ
2t3 + 0.02

1 − ᾱ

ᾱ
22t3 .

For the third inequality, we notice that l3 − l2 = 2 for
t3 ≤ 1

2
, and l3 − l2 = 1 for t3 > 1

2
. The assumption that

l1 ≥ 0 implies that ᾱ > 1
2

(we do not need the exact bound
on ᾱ), which we use for the second term of the r.h.s. of
the fourth inequality. Maximizing over t1, t2, t3 shows that
P∞

l=0 M ᾱ
2l < 2ᾱ

1−ᾱ
.

Now suppose that l1 < 0 and l2 ≥ 0. The first part of the
sum is now

l2
X

l=0

M ᾱ
2l ≤ ᾱ

1 − ᾱ

“

`

1 +
1√
2

´

2−t2/2 − 1

2
2−t2

”

−

−
`

1 +
1√
2

´√
ᾱ +

1 − ᾱ

2
,

while the bounds on the other two parts stay the same. Since
l1 < 0, it follows that ᾱ < 0.7. When ᾱ < 0.7, it holds that
3
√

ᾱ > ᾱ
1−ᾱ

. On the other hand, l2 ≥ 0 is equivalent to

ᾱ ≥ 1
2
. When ᾱ ≥ 1

2
, it holds that

√
ᾱ > 1 − ᾱ. Simple

calculations again show that
P∞

l=0 M ᾱ
2l < 2ᾱ

1−ᾱ
(a slightly

lower constant could also be stated).
Now suppose that l2 < 0 and l3 ≥ 0. This assumption

implies that ᾱ > 0.3, and we may write 1−ᾱ
ᾱ

< 6ᾱ
1−ᾱ

. In this

case, we get
P∞

l=0 M ᾱ
2l < 1.1 ᾱ

1−ᾱ
.

In the final case, l3 < 0, we have
P∞

l=0 M ᾱ
2l < 0.66ᾱ2

(1−ᾱ)3
+

0.15ᾱ
(1−ᾱ)3

. Since ᾱ < 0.33 in this case, we may use ᾱ
(1−ᾱ)2

<

0.75 and 1
(1−ᾱ)2

< 2.25 to get the stated bound.

6. OPEN PROBLEMS
An immediate question is whether it is possible to improve

the dependence on α in the analysis of linear probing with
constant independence. In general, the problem of finding
practical, and provably good hash functions for a range of
other important hashing methods remains unsolved. For ex-
ample, cuckoo hashing [9] and its variants presently have no
such functions. Also, if we consider the problem of hashing
a set into n/ log n buckets such that the number of keys in
each bucket is O(log n) w.h.p., there is no known explicit
class achieving this with function descriptions of O(log |U |)
bits. Possibly, such families could be designed using efficient
circuits, rather than a standard RAM instruction set.

Acknowledgment. We thank Martin Dietzfelbinger and
an anonymous reviewer for numerous suggestions improving
the presentation. In particular, we thank Martin Dietzfel-
binger for showing us a simplified proof of Lemma 1.

7. REFERENCES
[1] J. R. Black, C. U. Martel, and H. Qi. Graph and

hashing algorithms for modern architectures: Design
and performance. In Proceedings of 2nd International
Workshop on Algorithm Engineering (WAE ’92),
pages 37–48. Max-Planck-Institut für Informatik,
1998.

[2] J. L. Carter and M. N. Wegman. Universal classes of
hash functions. J. Comput. System Sci.,
18(2):143–154, 1979.

[3] H. Chernoff. A measure of asymptotic efficiency for
tests of a hypothesis based on the sum of observations.
Annals of Mathematical Statistics, 23(4):493–507,
1952.

[4] M. Dietzfelbinger and C. Weidling. Balanced
allocation and dictionaries with tightly packed
constant size bins. In Proceedings of the 32nd
International Colloquium on Automata, Languages
and Programming (ICALP ’05), volume 3580 of
Lecture Notes in Computer Science, pages 166–178.
Springer, 2005.

[5] G. L. Heileman and W. Luo. How caching affects
hashing. In Proceedings of the 7th Workshop on
Algorithm Engineering and Experiments (ALENEX
’05), pages 141–154. SIAM, 2005.

[6] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

[7] D. E. Knuth. Notes on ”open” addressing, July 22
1963. Unpublished memorandum. Available at
http://citeseer.ist.psu.edu/knuth63notes.html.

[8] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity
theory of efficient parallel algorithms. Theoretical
Computer Science, 71(1):95–132, Mar. 1990.

[9] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51:122–144, 2004.

[10] H. Prodinger and W. Szpankowski (eds.). Special issue
on average case analysis of algorithms. Algorithmica,
22(4), 1998. Preface.

[11] J. P. Schmidt and A. Siegel. The analysis of closed
hashing under limited randomness (extended
abstract). In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing (STOC ’90),
pages 224–234. ACM Press, 1990.

[12] A. Siegel. On universal classes of extremely random
constant-time hash functions. SIAM J. Comput.,
33(3):505–543, 2004.

[13] A. Siegel and J. Schmidt. Closed hashing is
computable and optimally randomizable with
universal hash functions. Technical Report
TR1995-687, New York University, Apr., 1995.

[14] M. Thorup and Y. Zhang. Tabulation based
4-universal hashing with applications to second
moment estimation. In Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA ’04), pages 615–624, 2004.

[15] M. N. Wegman and J. L. Carter. New hash functions
and their use in authentication and set equality. J.
Comput. System Sci., 22(3):265–279, 1981.

