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Abstract. Hashing with linear probing dates back to the 1950s, and is among the most studied
algorithms for storing (key,value) pairs. In recent years it has become one of the most important
hash table organizations since it uses the cache of modern computers very well. Unfortunately,
previous analyses rely either on complicated and space consuming hash functions, or on the unrealistic
assumption of free access to a hash function with random and independent function values. Carter
and Wegman, in their seminal paper on universal hashing, raised the question of extending their
analysis to linear probing. However, we show in this paper that linear probing using a 2-wise
independent hash function may have expected logarithmic cost per operation. Recently, Patrascu and
Thorup have shown that also 3- and 4-wise independent hash functions may give rise to logarithmic
expected query time.

On the positive side, we show that 5-wise independence is enough to ensure constant expected
time per operation. This resolves the question of finding a space and time efficient hash function
that provably ensures good performance for hashing with linear probing.
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1. Introduction. One if the most common subtasks in computer programs is
to identify the location in memory of a particular piece of information, identified by a
unique key. As an example, consider a program that counts the number of occurrences
of words in a document. For each word, the counter associated with that word either
needs to be created (if the word is seen for the first time), or located in memory.
Naive solutions to this problem would give solutions that scale poorly to settings with
many keys (documents with many distinct words, in the example). Many kinds of
data intensive software such as database systems, data stream analysis algorithms,
and network routers, rely on key lookup as a crucial component.

Fortunately, there exist methods that allow insertion of new keys as well as re-
trieval of existing keys to be done in time independent of the size of the key set.
The common feature of these methods is that they use one or more randomly chosen
functions (so-called hash functions) in conjunctions with an array (or vector), referred
to as the hash table, that is able to hold keys and associated data. In many cases, a
programmer using a hash table, rather than a naive solution, can reduce the running
time of an algorithm by a factor proportional to the size of the data set handled.

Hashing with linear probing is perhaps the simplest method for organizing a hash
table. Given a hash function &, a key « is inserted in the hash table by searching for
the first vacant position in the sequence h(x),h(z) + 1, h(x) + 2,... (Here, addition
is modulo 7, the size of the hash table.) Retrieval of a key proceeds similarly, until
either the key is found, or a vacant position is encountered, in which case the key is
not present in the hash table. Below we have illustrated insertion (and retrieval) of a
key x in a hash table, where other keys are shown as grey balls.
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An implicit assumption made here is that a key fits in a single hash table location
— for generalization to variable length keys see [17]. Deletion of keys can be performed
by moving keys back in the probe sequence in a greedy fashion (ensuring that no key x
is moved to before h(x)), until no such move is possible (when a vacant array position
is encountered).

Linear probing is attractive compared to other hashing methods because it ac-
cesses memory in a sequential fashion. The memory systems of modern computers
are optimized for this type of access pattern, which means that inspecting several
consecutive memory locations does not take significantly more time than inspecting a
single, randomly chosen memory location. In fact, experimental studies [1, 5, 10] have
found linear probing to be the fastest hash table organization for hash tables that are
moderately filled (30-70%). While linear probing operations are known to require
more instructions than those of other hashing methods, the more efficient memory
access pattern makes it very fast in practice.

1.1. Early analysis and heuristic implementations. Linear probing dates
back to 1954, but was first analyzed by Knuth in a 1963 memorandum [6] now consid-
ered to be the birth of the area of analysis of algorithms [11]. Even if, say, half of the
hash table is empty, it is not clear a priori that it will be fast to find a vacant location
for a new key x. The reason is that h(z) may lie in a long interval of occupied posi-
tions. In fact, if such an interval starts to form there will be a “pileup” phenomenon,
since the expected number of new keys added to the interval is proportional to its
length.

Knuth’s analysis, showing that the expected time per operation is independent
of the number of keys, is based on the assumption that h has uniformly distributed
and independent function values. But actually representing such a function is not a
viable option: Retrieving the random value h(x) associated with = seems as hard as
the problem we wanted to solve in the first place! Therefore, such analyses do not say
much about practical, implementable solutions.

The hash functions used to implement linear probing in practice are heuristics,
and there is no known theoretical guarantee on their performance. Since linear probing
is particularly sensitive to a bad choice of hash function, Heileman and Luo [5] advice
against linear probing for general-purpose use.

1.2. Analysis using limited randomness. In 1977, Carter and Wegman’s
notion of universal hashing [3] initiated a new era in the design of hashing algorithms,
where explicit and efficient ways of choosing hash functions replaced the assumption
of full randomness. The big insight was that in many cases it is sufficient that the
hash function is random with respect to small sets of keys. For example, consider the
function h(z) = (az + b) mod p, where p is a fixed prime number and a,b are chosen
independently at random from {0,...,p — 1}. For any two distinct integers x1, x5 €
{0,...,p — 1} the values h(z1) and h(z3) are independent and uniformly random
(over the choice of @ and b). This “2-wise independence” turns out to be sufficient to
guarantee many of the properties possessed by fully random hash functions [3, 20].
More generally, researchers have considered k-wise independence where any k values
of the hash function are independent.

In their seminal paper, Carter and Wegman state it as an open problem to “Ex-
tend the analysis to [...] double hashing and open addressing.”! The first analysis of

INowadays the term “open addressing” refers to any hashing scheme where the data structure is
an array containing only keys and empty locations. However, Knuth used the term to refer to linear
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linear probing relying only on limited randomness was given by Siegel and Schmidt
in [14, 16]. Specifically, they show that O(logn)-wise independence is sufficient to
achieve essentially the same performance as in the fully random case. (We use n to
denote the number of keys inserted into the hash table.) Another paper by Siegel [15]
shows that evaluation of a hash function from a O(logn)-wise independent family
requires time Q(logn) unless the space used to describe the function is n*(Y). A fam-
ily of functions is given that achieves space usage n® and constant time evaluation
of functions, for any € > 0. However, this result is only of theoretical interest since
the associated constants are very large. A construction with similar properties but
smaller constants has later been given by Dietzfelbinger and Weidling [4].

A significant drawback of both methods, besides rather complex function evalua-
tion, is the use of random accesses to the memory locations holding the hash function
description. This means that we lose the advantage of accessing memory in a sequen-
tial fashion!

1.3. Our results. We show in this paper that linear probing using a 2-wise
independent family may have expected logarithmic cost per operation. Specifically,
we resolve the open problem of Carter and Wegman by showing that linear probing
insertion of n keys in a table of size 2n using a function of the form

z +— ((ax 4+ b) mod p) mod 2n,

where p = 4n + 1 is prime and we randomly choose a € [p]\{0} and b € [p], requires
Q(nlogn) insertion steps in expectation for a worst case insertion sequence (chosen
independently of @ and b). Since the total insertion cost equals the total cost of looking
up all keys, the expected average time to look up a key in the resulting hash table
is 2(logn). The main observation behind the proof is that if a is the multiplicative
inverse (modulo p) of a small integer m, then inserting a certain set that consists of
two intervals has expected cost Q(n?/m).

On the positive side, we show that 5-wise independence is enough to ensure con-
stant expected time per operation, when the load factor o = n/r is bounded away
from 1. Our proof is based on a new way of bounding the cost of linear probing
operations, by counting intervals in which “many” probe sequences start. When be-
ginning this work, our first observation was that a key = can be placed in location
h(z) + 1 mod r only if there is an interval I > h(z) where |I| > [ and there are |I|
keys from S with hash value in I. A slightly stronger fact is shown in Lemma 4.1.
Since the expected number of hash values in an interval I is «|I|, long such intervals
are “rare” if the hash function exhibits sufficiently high independence.

The analysis in this version of the paper shows a bound of O(W) expected
time per operation at load factor a. Using similar, but more involved ideas it is
possible to replace the exponent 5/2 by 13/6 [9], and even 2 [13]. The latter exponent
is identical to that obtained by a fully random hash function [6].

1.4. Practical implications. Our results imply that simple and efficient hash
functions, whose description can be stored in CPU registers, can be used to give
provably good expected performance. For completeness we briefly describe concrete
ways of chosing hash functions.

probing in [6], and since it is mentioned here together with the double hashing probe sequence, we
believe that it refers to linear probing.
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Polynomial hash functions. Carter and Wegman [19] observed that the family of
degree k — 1 polynomials in any finite field is k-wise independent. Specifically, for
any prime p we may use the field defined by arithmetic modulo p to get a family of
functions from [p] to [p] where a function can be evaluated in time O(k) on a RAM,
assuming that addition and multiplication modulo p can be performed in constant
time. To obtain a smaller range R = [r] we may map integers in [p] down to R by
a modulo r operation. This of course preserves independence, but the family is now
only close to uniform. Specifically, the maximum load & for this family is in the range
[a, (1 4+ r/p)a]. By choosing p much larger than r we can make & arbitrarily close
to a.

Tabulation-based hash functions. A k-wise independent family proposed by Tho-
rup and Zhang [18] has uniformly distributed function values in [r], and thus & = a.
The construction for 5-wise independence is particularly appealing when keys are
short (e.g., 32 bits). If we interpret a key as a tuple of two numbers (1, z2) the hash
function h(zy1,2z2) = (h1(z1) + ha(x2) + hs(x; + x2)) mod r is 5-wise independent
assuming hq, ho, hg are. If 21, x9, and x1 4 5 are small numbers (e.g., 16 bits) we can
use a lookup table to store all hash values. This means that h(z1,x2) can be evaluated
using three table lookups and some additions. If the tables are small enough to fit
within the CPU cache, evaluation is particularly efficient. In fact, this construction
makes k-wise independence truly competitive with popular heuristics, for small & > 3,
in terms of evaluation time [18].

1.5. Subsequent work. The work of the present paper has been built upon
in designing hash tables with additional considerations. Blelloch and Golovin [2]
described a linear probing hash table implementation that is strongly history inde-
pendent. Thorup [17] studied how to get efficient compositions of hash functions for
linear probing when the domain of keys is complex, like the set of variable-length
strings. Most recently, Patragscu and Thorup showed that linear probing works even
with the simplest possible type of tabulation-based hashing [13].

On the lower bound side, Patragcu and Thorup showed that there exist 3- and
4-wise independent hash function constructions that result in logarithmic time per
operation [12]. This means that there is no hope to improve our results to require
lower independence. They also show even worse performance for single operations
under 2-wise independence than exhibited in this paper.

def

2. Preliminaries. Let [z] = {0,1,...,2—1}. Throughout this paper S denotes

a subset of some universe U, and h will denote a function from U to R = [r]. We

denote the elements of S by {x1,x2,...,2,}, and refer to the elements of S as keys.
We let n = |S|, and o = n/r.

A family H of functions from U to R is k-wise independent if for any k distinct
elements x1,...,xx € U and h chosen uniformly at random from #, the random
variables h(x1),...,h(xy) are independent?. We refer to the variable

an = n:cerlrjl7ap>éRPrh€H{h(x) =p}

as the maximum load of H. When the hash function family in question is understood

2We note that in some papers, the notion of k-wise independence is stronger in that it is required
that function values are uniformly distributed in R. However, some interesting k-wise independent
families have a slightly nonuniform distribution, and we will provide analysis for such families as
well.
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from the context, we omit the subscript of &a. If H distributes hash function values of
all elements of U uniformly on R, we will have & = «, and in general & > «.
For Q C R we introduce notation for the “translated set”

a+Q= {(a+y)modr|yeqQ}.

An interval (modulo r) is a set of the form a + [b], for integers a and b. When we
write [a — b, a) this interval represents the set a — 1 — [b]. We will later use sets of the
form h(x) + @, for a fixed x and with @ being an interval.

2.1. A probabilistic lemma. Here we state a lemma that is essential for our
upper bound results, described in Section 4. It gives an upper bound on the probability
that an interval around a particular hash function value contains the hash function
values of “many” keys. The proof is similar to the proof of [8, Lemma 4.19].

LEMMA 2.1. Let S C U be a set of size n, and H a 5-wise independent family of
functions from U to R with mazimum load at most & < 1. If h is chosen uniformly
at random from H, then for any Q C R of size q, and any fized x € U\ S,

4aq?

Pr{l{ye 5 : hiy) € (he) + Q)} = ag +d} <

Proof. Denote by A the event that [{y € S : h(y) € (h(z) + Q)}| = ag +d.

We will show a stronger statement, namely that the same upper bound holds for the

conditional probability Pr{A | h(z) = p}, for any p € R. Notice that the subfamily

{h € H | h(z) = p} is 4-wise independent on U \ {z}, and that the distribution

of function values is identical to the distribution when A is chosen from #H. The
statement of the lemma will then follow from

1 4ag?
Pr(A) = peZRPr{h(x) = p}Pr{A | h(z) =p} <r-—— .

Let p; < Pr{h(z;) € (h(z) + Q)}, and consider the random variables
X, et 1—p;, if h(z;) € h(z)+Q
T -, otherwise

def

Let X = ) . X, and observe that

{yes : h(y>e<h<x>+Q>}|=X+Zpisx+aq :

The last inequality above is by the definition of maximum load. So to prove the
lemma it suffices to bound Pr{X > d}. We will use the 4th moment inequality

Pr{X >d} <E(X*)/d* .

Clearly, E(X;) = 0 for any ¢, and the variables X1,...,X,, are 4-wise independent.
Therefore we have E(XilXiZXiBXu) = 0 unless ’il = i2 = ig = ’i4 or (il,ig,ig,izl)
contains 2 numbers, both of them exactly twice. This means that

E(X?) = Z B(Xi1 X0 Xi3Xi4)
1<y ,ig,i3,ia<n

> EED+ D (ECDEX]).

1<i<n 1<i<j<n
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The first sum can be bounded as follows:

ZE(X;*) => (pi(1=pi)* + (1= pi)p})

i

- Zpi(l —p)((1—p)® +p?)
< Zpi <aq .

The second sum is:

Y 6l -p)pi(1 =) <3 Y pip;

1<i<j<n 1<i,5<n

=3(3_p)* <3(ag)” .

In conclusion we have
3(aq)® +aq  4ag?
FT TR

Pr{X > d} <E(X%)/d* <

finishing the proof. O

3. 2-wise independence. In this section we show that 2-wise independence is
not sufficient to ensure good performance for linear probing: Logarithmic time per
operation is needed for a worst-case set. This complements our upper bounds for
5-wise (and higher) independence. We will consider two 2-wise independent families:
The first one is a very commonly used hash function family. The latter family is similar
to the first, except that we have ensured function values to be uniformly distributed
in R. To lower bound the cost of linear probing we use the following lemma.

LEMMA 3.1. Suppose a set S of n keys is inserted in a linear probing hash table
of size r > n. Let {S’j}ﬁ-:l be any partition of S such that for every set S; the set

I; 2 h(S;) is an interval (modulo r), and |I;| < /2. Then the total number of steps
to perform the insertions is at least

S nI,Pr2 .

1<j1<g2 <t

Proof. We proceed by induction on £. Since the number of insertion steps is
independent of the order of insertions [7, p. 538], we may assume that the inser-
tions corresponding to Sy occur last and in left-to-right order of hash values. By the
induction hypothesis, the total number of steps to do all preceding insertions is at
least

Z |Ij1 mljz‘z/Z :

1<j1<j2<l-1

For 1 < jq,jo < € let S; 4, denote the set of keys from S, that have probe sequences
starting in I;,, i.e Sj,;, = {z € S;, | h(z) € I;,}. For any = € Sp; the insertion of x
will pass all the elements of Sj; “after h(x)”, i.e., whose hash value is in h(z) + [r/2].
This means that at least |I; N I,|?/2 steps are used during the insertions of the keys
from Sy to pass locations occupied by keys of S;. Summing over all j < ¢ and adding
to the bound from the induction hypothesis yields the desired result. O
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3.1. Linear congruential hash functions. We first consider the following
family of functions, introduced by Carter and Wegman [3] as a first example of a
universal family of hash functions:

H(p,7) = {x — ((ax 4+ b) mod p) mod r |0 < a <p,0<b<p}
where p is any prime number and r < p is any integer. Functions in H(p,r) map
integers of [p] to [r].

THEOREM 3.2. Forr = [p/2] there exists a set S C [p], |S| < r/2, such that the
expected cost of inserting the keys of S in a linear probing hash table of size r using
a hash function chosen uniformly at random from H(p,r) is Q(rlogr).

Proof. We give a randomized construction of S, and show that when choosing h at
random from H(p,r) the expected total insertion cost for the keys of S is Q(rlogr).
This implies the existence of a fixed set S with at least the same expectation for
random h € H(p,r). Specifically, we partition [p] into 8 intervals Uy, ..., Us, such
that U, U; = [p| and /4 > |U;| > r/4 — 1 for ¢ = 1,...,8, and let S be the union
of two of the sets Uy,...,Us chosen at random (without replacement). Note that
|S| < r/2, as required.

Consider a particular function h € H(p,r) and the associated values of a and
b. Let h(z) & (az +b) mod p, and let m denote the unique integer in [p] such that
am mod p = 1 (i.e., m = a~! in GF(p)). Since h is a permutation on [p], the sets
h(U;),i=1,...,8, are disjoint. We note that for any z, h(z+m) = (h(x)+1) mod p.
Thus, for any k, iL({l‘, x4+m,xz+2m,...,x+km}) is an interval (modulo p) of length
k+1. This implies that for all i there exists a set L; of m disjoint intervals such that
h(U;) = Urez, {- Similarly, for all ¢ there exists a set L; of at most m + 1 intervals
(not necessarily disjoint) such that we have the multiset equality h(U;) = U;ep, 1.
Since all intervals in (J, L; are disjoint and their sizes differ by at most 1, an interval
in J; L; can intersect at most two other intervals in (J, L;. We now consider two
cases:

1. Suppose there is some i such that

> |LND[>1/16 . (3.1)
I,Ix€L;, 1 #I>

With constant probability it holds that U; C S. We apply Lemma 3.1 on the
set U; and a partition of U; that corresponds to the interval collection Lj;.
The lemma gives us a lower bound of

> |hNk]?/2 (3.2)

I, I2€L;, 11 #12

on the number of probes made during all insertions. This sum is minimized if
all nonzero intersections have the same size. Suppose that there are k = O(m)
nonzero intersections. According to (3.1) the equal size of intersections would
have to be Q(r/k). Therefore the sum in (3.2) is Q(r?/k) = Q(r?/m).

2. Now suppose that for all 7,

> LNkl <r/16 .

I, I2eLl;, [1#12

Note that any value in [r — 1] is contained in exactly two intervals of | J, L;.
By the assumption, the number of values that occur in two intervals from the
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same collection L;, for any i, is less than 8 - /16 = r/2. Thus there exist
i1,142, 11 # 12, such that |h(U;,) N h(U;,)| = Q(r). With constant probability
we have that S = U;, UU,;,. We now apply Lemma 3.1. Consider just the
terms in the sum of the form |I; N I3|?/2, where I; € L;, and Iy € L;,. As
before, this sum is minimized if all O(m) intersections have the same size,
and we derive an Q(72/m) lower bound on the number of insertion steps.
For a random h € H(p, ), m is uniformly distributed in {1,...,p} (the mapping

a+ a1 is a permutation of {1,...,p}). This means that the expected total insertion
cost is:
1< r?
Q- Z r?/m| =Q (logp> =Q(rlogr) .
» = p
O

3.2. Family with uniform distribution. One might wonder if the lower bound
shown in the previous section also holds if the hash function values are uniformly
distributed in R. We slightly modify H(p, ) to remain 2-wise independent and also

have uniformly distributed function values. Let p = [p/r]r, and define:

aer [ g ifg>p
9(y,9) = { y otherwise

For a vector v let v; denote the ¢ + 1st component (indexes starting with zero). We
define:

H*(p,r) = {x = g((az + b) mod p,v,) mod 7 [0 <a <p, 0<b<p,ve[p}

LEMMA 3.3 (2-wise independence). For any pair of distinct values x1,z2 € [p],
and any y1,y2 € [r], if b is chosen uniformly at random from H*(p,r), then

Pr{h(z1) =11 Ah(z2) =92} = 1/r% .

Proof. We will show something stronger than claimed, namely that the family
H** ={z — g((axz +b) mod p,v;) |0 <a<p, 0<b<p,veE[pP}

is 2-wise independent and has function values uniformly distributed in [p]. Since r
divides p this will imply the lemma. Pick any pair of distinct values x1, z2 € [p], and
consider a random function h € H**. Clearly, v,, and v,, are uniform in [p] and
independent. We note as in [3] that for any yi,y5 € [p] there is exactly one choice
of a and b that makes (ax; + b) mod p = y} and (axs + b) mod p = y5. This is
1
X9 1
(azg + b) mod p are uniform in [p] and independent. We can think of the definition
of h(x) as follows: The value is v, unless v, € [p], in which case we substitute v, for
another random value in [p], namely (axz + b) mod p. It follows that hash function
values are uniformly distributed, and 2-wise independent. O

COROLLARY 3.4. Theorem 8.2 holds also if we replace H(p,r) by H*(p,7). In
particular, 2-wise independence with uniformly distributed function values is not a
sufficient condition for linear probing to have expected constant cost per operation.

because the matrix ) is invertible. As a consequence, (ax; + b) mod p and
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Proof. Consider the parameters a, b, and v of a random function in H*(p,r).
Since r = [p/2] we have p = p+ 1, and (p/p)? > 1/4. Therefore, with constant
probability it holds that a # 0 and v € [p]P. Restricted to functions satisfying
this, the family H*(p,r) is identical to H(p,r). Thus, the lower bound carries over
(with a smaller constant). By Lemma 3.3, H* is 2-wise independent with uniformly
distributed function values. O

We remark that the lower bound is tight. A corresponding O(nlogn) upper
bound can be shown by applying the framework of section 4, but using Chebychev’s
inequality rather than Lemma 2.1 as the basic tool for bounding probabilities (see
also [12]).

4. 5-wise independence. We want to bound the expected number of probes
into the table made during any single operation (insertion, deletion, or lookup of a
key x) when the hash table contains the set S of keys. It is well known that for linear
probing, the set P of occupied table positions depends only on the set S and the
hash function, independent of the sequence of insertions and deletions performed. An
operation on key = makes no more than

1+ max{l | h(z) + [I] C P}

probes into the table, because the iteration stops when the next unoccupied position
is found (or sooner in case of a successful search). We first show a lemma which
intuitively says that if the operation on the key x goes on for at least [ steps, then
there are either “many” keys hashing to the interval h(x) + [I], or there are “many”
keys that hash to some interval having h(z) as its right endpoint.
LEMMA 4.1. For anyl > 0 and & € (0,1), if h(z) + [I] C P then at least one of
the following holds:
1 {ye S\ o} : h(y) € (h(z) + ID}H = 4811, or
2. (30) ‘{y €S : h(y) € [h(z) —¢, h(x))}| >0+ 527
Proof. Suppose that |{y € S\ {z} : h(y) € (h(z) + [I])}| < 342 — 1. Then in
either case, z € S or z ¢ S, it holds that [{y € S : h(y) € (h(z) + [I])}| < L%I. Let

' = max{l : [h(z)—¢, h(z)] C P} .

Now, fix any way of placing the keys in the hash table, e.g., suppose that keys are
inserted in sorted order. Consider the set S* C S of keys stored in the interval
I =[h(x) =V, h(z) +1—1]. By the choice of I’ there must be an empty position to
the left of I, so h(S*) C I. This means:

{y €S : hy) € [h(@) =1, h(@)}| = {y € S+ h(y) € [h(z) =T, h())}|
> |8*| ~ [{y € §* : h(y) € (h(z) + 1)}
> |I] -39
=+ 5% .

0

The next lemma upper bounds the probability that there exists some interval of
form [h(z) — ¢, h(x)) having £+ d keys hashing into it, with d being a parameter. The
derived bound will later be used to cover the case 2 from Lemma 4.1.

LEMMA 4.2. Let S C U be a set of size n, and H a 5-wise independent family of
functions from U to R with a mazimum load of & < 1. If h is chosen uniformly at
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random from H, then for any x € U and \ > 0,

Pr {m?X(Hy €S : h(y) € [h(x) — 4, h(z))}| — ) > A+1 } Sa

T—apif X

Proof. We will use the symbol A to denote [3(1 —a)~*/2]. Let A; be the event
that

{y €S : hy) € [h(x) —iA, h(x }|—zA>A

We claim that it is sufficient to show Pr (UZ>0 ) < £%. To see this, suppose that

|{y€S. h(y) € [h(x) — £, h(z }|—£>W,f0rsome€ Let ¢/ —[éw.Then

A+1
(1—a)3/2
zi’A—(A—l)JrA( a)3? 41

Hy €S : h(y) € [hx) —i'A, h(z)}] > £+

Zi’A+§(1—a)_3/Q+12i’A+A .

In this lemma we use a simple upper bound Pr({J,.,4:) < > ,o0Pr(4;). We use
Lemma 2.1 to estimate each value Pr(A4;). Note that intersections of any interval
[h(z) — £, h(x)) with the sets h(S\ {z}) and h(S) are the same.

t

)2 46 — (155)?
2 PrlA) <) ZA+A)4 =SR2y

i>0 1>0

We used the substitution t=(1—a)i. Thelastsumisoverte {l1—a, 2(1—a),...}.

The function s 8 first 1ncreasmg and then decreasing on [0,00). Thus the sum

(1+t
can be bounded by the integral ;= fl a (1+t 7dt plus the value of the biggest term
in the sum.

ZP 1 r + ! /00 r dt
r P a——— max
A?(l—a)? B0 T T-ali (v
_da 1 1+/°°t2dt
A2(1—a)p \10 ' J, (1+0)*
204(17 73<8a

< Az =2
0

THEOREM 4.3. Consider any sequence of operations (insertions, deletions, and
lookups) in a linear probing hash table where the hash function h used has been chosen
uniformly at random from a 5-wise independent family of functions H. Letn and & <
1 denote, respectively, the mazximum number of keys in the table during a particular
operation and the corresponding maximum load. Then the expected number of probes
made during that operation is O((1 — &)~%/?).

Proof. We refer to x, S, and P as defined previously in this section. As argued
above, the expected probe count is bounded by

14 Y Pr{h(x)+[l] C P} .

>0
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Let lp = ﬁ. For [ < [y we use the trivial upper bound Pr{h(z) + [[] C P} < 1.
In the following we consider the case [ > .

Let A; be the event that [{y € S\ {z} : h(y) € (h(z)+[I])}|
B be the event that (3¢) [{y € S : h(y) € [h(z) L
implies that

z 12871, and let
+1 C_“l. Lemma 4.1

> Pr{h(z) + 1] S P} <> (Pr(A) + Pr(By)) .

1>l >lo

Estimates of Pr(A;) and Pr(B;) are obtained from Lemma 2.1 and Lemma 4.2 respec-
tively:

4al? 8a
Z (Pr(Al) + PI‘(B[)) < Z ((lal —1)4 + (%l _ 1)2)

1>1o 1>l 2

= O(a 3 ((1 —a) T (- a)_5l_2)>

1>l

=0((1-a)"/lo) =01 —a)™>/%) .

5. Open problems. This paper and its followup work have largely settled the
question of practical and provably good hash functions for linear probing. Challenges
remain with respect to finding such hash functions for a number of other important
hashing methods. Very recently, Patragcu and Thorup [13] showed that static cuckoo
hashing [10] works well with the simplest tabulation-based hashing method. Still, the
problem of finding such hash functions with logarithmic description size remains open.
Also, if we consider the problem of hashing a set into n/logn buckets such that the
number of keys in each bucket is O(logn) with high probability, there is no known
explicit class achieving this with function descriptions of O(log |U|) bits. Possibly,
such families could be designed using efficient circuits, rather than a standard CPU
instruction set.
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