
To appear in proceedings of ICALP 2002. psy227 Springer Verlag.
Available on-line at http://www.brics.dk/ pagh/papers/

One-Probe Search

Rasmus Pagh1 and Anna Östlin

BRICS2, Department of Computer Science
University of Aarhus, Denmark

{pagh,ffr}@brics.dk

Abstract. We consider dictionaries that perform lookups by probing
a single word of memory, knowing only the size of the data structure.
We describe a randomized dictionary where a lookup returns the correct
answer with probability 1− ε, and otherwise returns “don’t know”. The
lookup procedure uses an expander graph to select the memory location
to probe. Recent explicit expander constructions are shown to yield space
usage far smaller than what would be required using a deterministic
lookup procedure. Our data structure supports efficient deterministic
updates, exhibiting new probabilistic guarantees on dictionary running
time.

1 Introduction

The dictionary is one of the most well-studied data structures. A dictionary
represents a set S of elements (called keys) from some universe U , along with
information associated with each key in the set. Any x ∈ U can be looked up,
i.e., it can be reported whether x ∈ S, and if so, what information is associated
with x. We consider this problem on a unit cost word RAM in the case where
keys and associated information have fixed size and are not too big (see below).
The most straightforward implementation, an array indexed by the keys, has the
disadvantage that the space usage is proportional to the size of U rather than
to the size of S. On the other hand, arrays are extremely time efficient: A single
memory probe suffices to retrieve or update an entry.

It is easy to see that there exists no better deterministic one-probe dictio-
nary than an array. In this paper we investigate randomized one-probe search
strategies, and show that it is possible, using much less space than an array
implementation, to look up a given key with probability arbitrarily close to 1.
The probability is over coin tosses performed by the lookup procedure. In case
the memory probe did not supply enough information to answer the query, this
is realized by the lookup procedure, and it produces the answer “don’t know”.
1 Partially supported by the IST Programme of the EU under contract number IST-

1999-14186 (ALCOM-FT).
2 Basic Research in Computer Science (www.brics.dk), funded by the Danish National

Research Foundation.



In particular, by iterating until an answer is found, we get a Las Vegas lookup
procedure that can have an expected number of probes arbitrarily close to 1.

It should be noted that one-probe search is impossible if one has no idea
how much data is stored. We assume that the query algorithm knows the size
of the data structure – a number that only changes when the size of the key
set changes by a constant factor. The fact that the size, which may rarely or
never change, is the only kind of global information needed to query the data
structure means that it is well suited to support concurrent lookups (in parallel or
distributed settings). In contrast, all known hash function based lookup schemes
have some kind of global hash function that must be changed regularly. Even
concurrent lookup of the same key, without accessing the same memory location,
is supported to some extent by our dictionary. This is due to the fact that two
lookups of the same key are not very likely to probe the same memory location.

A curious feature of our lookup procedure is that it makes its decision based
on a constant number of equality tests – in this sense it is comparison-based. How-
ever, the data structure is not implicit in the sense of Munro and Suwanda [11],
as it stores keys not in S.

Our studies were inspired by recent work of Buhrman et al. [4] on randomized
analogs of bit vectors. They presented a Monte Carlo data structure where one
bit probe suffices to retrieve a given bit with probability arbitrarily close to 1.
When storing a sparse bit vector (few 1s) the space usage is much smaller than
that of a bit vector. When storing no associated information, a dictionary solves
the membership problem, which can also be seen as the problem of storing a bit
vector. Our Las Vegas lookup procedure is stronger than the Monte Carlo lookup
procedure in [4], as a wrong answer is never returned. The price paid for this is
an expected bound on the number of probes, a slightly higher space usage, and,
of course, that we look up one word rather than one bit. The connection to [4] is
also found in the underlying technique: We employ the same kind of unbalanced
bipartite expander graph as is used there. Recently, explicit constructions3 of
such graphs with near-optimal parameters have been found [14, 15].

Let u = |U | and n = |S|. We assume that one word is large enough to
hold one of 2u + 1 different symbols plus the information associated with a key.
(Note that if this is not the case, it can be simulated by accessing a number of
consecutive words rather than one word – an efficient operation in many memory
models.) Our main theorem is the following:

Theorem 1. For any constant ε > 0 there exists a nonexplicit one-probe dic-
tionary with success probability 1− ε, using O(n log 2u

n ) words of memory. Also,
there is an explicit construction using n · 2O((log log u)3) words of memory.

Note that the space overhead for the nonexplicit scheme, a factor of log 2u
n , is

exponentially smaller than that of an array implementation.

In the second part of the paper we consider dynamic updates to the dictionary
(insertions and deletions of keys). The fastest known dynamic dictionaries use
3 Where a given neighbor of a vertex can be computed in time polylogarithmic in the

number of vertices.



hashing, i.e., they select at random a number of functions from suitable families,
which are stored and subsequently used deterministically to direct searches.

A main point in this paper is that a fixed structure with random proper-
ties (the expander graph) can be used to move random choices from the data
structure itself to the lookup procedure. The absence of hash functions in our
data structure has the consequence that updates can be performed in a very lo-
cal manner. We show how to deterministically perform updates by probing and
changing a number of words that is nearly linear in the degree of the expander
graph (which, for optimal expanders, is at most logarithmic in the size of the
universe). Current explicit expanders are not fast enough for our dynamic data
structure to improve known results in a standard RAM model. However, if we
augment the RAM with an instruction for computing neighbors in an optimal
expander graph with given numbers of vertices, an efficient dynamic dictionary
can be implemented.

Theorem 2. In the expander-augmented RAM model, there is a dictionary where
a sequence of a insertions/deletions and b lookups in a key set of size at most n

takes time O(a(log 2u
n )1+o(1) + b + t) with probability 1 − 2−Ω(a+t/(log 2u

n )1+o(1)).
The space usage is O(n log 2u

n ) words.

When the ratio between the number of updates and lookups is small, the ex-
pected average time per dictionary operation is constant. Indeed, if the fraction
of updates is between (log 2u

n )−1−Ω(1) and n−ω(1), and if u = 2n1−Ω(1)
, the above

yields the best known probability, using space polynomial in n, that a sequence of
dictionary operations take average constant time. The intuitive reason why the
probability bound is so good, is that time consuming behavior requires bad ran-
dom choices in many invocations of the lookup procedure, and that the random
bits used in different invocations are independent.

1.1 Related Work

As described above, this paper is related to [4], in scope as well as in tools. The
use of expander graphs in connection with the membership problem was earlier
suggested by Fiat and Naor [6], as a tool for constructing an efficient implicit
dictionary.

Yao [16] showed an Ω(log n) worst case lower bound on the time for dictionary
lookups on a restricted RAM model allowing words to contain only keys of S
or special symbols from a fixed set whose size is a function of n (e.g., pointers).
The lower bound holds when space is bounded by a function of n, and u is
sufficiently large. It extends to give an Ω(log n) lower bound for the expected
time of randomized Las Vegas lookups.

Our data structure violates Yao’s lower bound model in two ways: 1. We allow
words to contain certain keys not in S (accessed only through equality tests);
2. We allow space depending on u. The second violation is the important one, as
Yao’s lower bound can be extended to allow 1. Yao also considered deterministic
one-probe schemes in his model, showing that, for n ≤ u/2, a space usage of
u/2 + O(1) words is necessary and sufficient for them to exist.



The worst case optimal number of word probes for membership was studied
by Pagh in [13] in the case where U equals the set of machine words. It was
shown that three word probes are necessary when using m words of space, unless
u = 2Ω(n2/m) or u ≤ n2+o(1). Sufficiency of three probes was shown for all
parameters (in most cases it followed by the classic dictionary of Fredman et
al. [7]). In the expected sense, most hashing based dictionaries can be made to
use arbitrarily close to 2 probes per lookup by expanding the size of the hash
table by a constant factor.

Dictionaries with sublogarithmic lookup time that also allow efficient de-
terministic updates have been developed in a number of papers [1, 2, 8, 9, 12].
Let n denote an upper bound on the number of keys in a dynamic dictionary. For
lookup time t = o(log log n), the best known update time is nO(1/t), achieved by
Hagerup et al. [9]. The currently best probabilistic guarantee on dynamic dictio-
nary performance, first achieved by Dietzfelbinger and Meyer auf der Heide in [5],
is that each operation takes constant time with probability 1−O(m−c), where c
is any constant and m is the space usage in words (which must be some constant
factor larger than n). This implies that a sequence of a insertions/deletions and
b lookups takes time O(a + b + t) with probability 1−O(m−t/n).

2 Preliminaries

In this section we define (n, d, ε)-expander graphs and state some results con-
cerning these graphs. For the rest of this paper we will assume ε to be a multiple
of 1/d, as this makes statements and proofs simpler. This will be without loss of
generality, as the statements we show do not change when rounding ε down to
the nearest multiple of 1/d.

Let G = (U, V, E) be a bipartite graph with left vertex set U , right vertex
set V , and edge set E. We denote the set of neighbors of a set S ⊆ U by
Γ (S) =

⋃
s∈S{v | (s, v) ∈ E}. We use Γ (x) as a shorthand for Γ ({x}), x ∈ U .

Definition 3. A bipartite graph G = (U, V, E) is d-regular if the degree of all
nodes in U is d. A bipartite d-regular graph G = (U, V, E) is an (n, d, ε)-expander
if for each S ⊆ U with |S| ≤ n it holds that |Γ (S)| ≥ (1− ε)d|S|.
Lemma 4. For 0 < ε < 1 and d ≥ 1, if |V | ≥ (1−ε)dn(2u/n)1/εde1/ε then there
exists an (n, d, ε)-expander graph G = (U, V, E), where |U | = u.

Proof. Our proof is a standard application of the probabilistic method. Let G =
(U, V, E) be a randomly generated graph created by the following procedure. For
each u ∈ U choose d neighbors with replacement, i.e., an edge can be chosen
more than once, but then the double edges are removed. We will argue that the
probability that this graph fails to be a (n, d, ε)-expander graph is less than 1
for the choices of |V | and d as stated in the lemma. The degrees of the nodes in
U in this graph may be less than d, but if there exists a graph that is expanding
with degree at most d for all nodes, then there clearly exists a graph that is
expanding with exactly degree d as well.



We must bound the probability that some subset of i ≤ n vertices from U
has fewer than (1 − ε)di neighbors. A subset S ⊆ U of size i can be chosen
in
(
u
i

)
ways and a set V ′ ⊆ V of size (1 − ε)di can be chosen in

( |V |
(1−ε)di

)
ways.

(Note that |V | ≥ (1 − ε)di.) The probability that such a set V ′ contains all of
the neighbors for S is ( (1−ε)di

|V | )di. Thus, the probability that some subset of U

of size i ≤ n has fewer than (1− ε)di neighbors is at most
n∑

i=1

(
u

i

)( |V |
(1 − ε)di

)(
(1 − ε)di

|V |
)di

<

n∑
i=1

(ue

i

)i
( |V |e

(1− ε)di

)(1−ε)di( (1− ε)di

|V |
)di

≤
n∑

i=1

((
(1− ε)di

|V |
)εd

edu/i

)i

.

If the term in the outermost parentheses is bounded by 1/2, the sum is less
than 1. This is the case when |V | fulfills the requirement stated in the lemma.2

Corollary 5. For any constants α, ε > 0 there exist an (n, d, ε)-expander G =
(U, V, E) for the following parameters:

– |U | = u, d = O(log(2u/n)) and |V | = O(n log(2u/n)).
– |U | = u, d = O(1) and |V | = O(n (2u/n)α).

Theorem 6. (Ta-Shma [14]) For any constant ε > 0 and for d = 2O((log log u)3),
there exists an explicit (n, d, ε)-expander G = (U, V, E) with |U | = u and |V | =
n · 2O((log log u)3).

3 Static Data Structure

Let S ⊆ U denote the key set we wish to store. Our data structure is an array
denoted by T . Its entries may contain the symbol x for keys x ∈ S, the symbol
¬x for keys x ∈ U\S, or the special symbol ⊥ 6∈ U . (Recall our assumption
that one of these symbols plus associated information fits into one word.) For
simplicity we will consider the case where there is no information associated
with keys, i.e., we solve just the membership problem. Extending this to allow
associated information is straightforward. We make use of a (2n + 1, d, ε/2)-
expander with neighbor function Γ . Given that a random element in the set
Γ (x) can be computed quickly for x ∈ U , the one-probe lookup procedure is
very efficient.

procedure lookupε(x)
choose v ∈ Γ (x) at random;
if T [v] = x then return ’yes’
else if T [v] ∈ {¬x,⊥} then return ’no’
else return ’don’t know’ ;

end;



The corresponding Las Vegas lookup algorithm is the following:

procedure lookup(x)
repeat

choose v ∈ Γ (x) at random;
until T [v] ∈ {x,¬x,⊥};
if T [v] = x then return ’yes’ else return ’no’ ;

end;

3.1 Requirements to the Data Structure

The success probability of lookupε(x) and the expected time of lookup(x) de-
pends on the content of the entries indexed by Γ (x) in T . To guarantee correct-
ness and success probability 1 − ε in each probe for x, the following conditions
should hold:

1. If x ∈ S, at least a fraction 1 − ε of the entries T [v], v ∈ Γ (x), contain x,
and none contain ¬x or ⊥.

2. If x /∈ S, at least a fraction 1− ε of the entries T [v], v ∈ Γ (x), contain either
¬x or ⊥, and none contain x.

By inserting ⊥ in all entries of T except the entries in Γ (S), condition 2
will be satisfied for all x /∈ S with |Γ (x) ∩ Γ (S)| ≤ εd. A key notion in this
paper is the set of ε-ghosts for a set S, which are the keys of U that have many
neighbors in common with S. For each ε-ghost x we will need some entries in T
with content ¬x.

Definition 7. Given a bipartite graph G = (U, V, E), a key x ∈ U is an ε-ghost
for the set S ⊆ U if |Γ (x) ∩ Γ (S)| > ε|Γ (x)| and x /∈ S.

Lemma 8. (Buhrman et al. [4]) There are at most n ε-ghosts for a set S of
size n in a (2n + 1, d, ε/2)-expander graph.

In order to fulfill conditions 1 and 2, we need to assign entries in T to the
keys in S and to the ε-ghosts for S.

Definition 9. Let G = (U, V, E) be a bipartite d-regular graph and let 0 < ε < 1.
An assignment for a set S ⊆ U , is a subset A ⊆ E ∩ (S × Γ (S)) such that for
v ∈ Γ (S), |A ∩ (S × {v})| = 1. A (1 − ε)-balanced assignment for S is an
assignment A, where for each s ∈ S it holds that |A ∩ ({s} × Γ (s))| ≥ (1− ε)d.

Lemma 10. If a graph G = (U, V, E) is an (n, d, ε)-expander then there exists
a (1− ε)-balanced assignment for every set S ⊆ U of size at most n.

To show the lemma we will use Hall’s theorem [10]. A perfect matching in a
bipartite graph (U, V, E) is a set of |U | edges such that for each x ∈ U there is
an edge (x, v) ∈ E, and for each v ∈ V there is at most one edge (x, v) ∈ E.



Theorem 11. (Hall’s theorem) In any bipartite graph G = (U, V, E), where for
each subset U ′ ⊆ U it holds that |U ′| ≤ |Γ (U ′)|, there exists a perfect matching.

Proof of Lemma 10. Let S be an arbitrary subset of U of size n. Let G′ =
(S, Γ (S), E′) be the subgraph of G induced by the nodes S and Γ (S), i.e.,
E′ = {(s, v) ∈ E | s ∈ S}. To prove the lemma we want to show that there
exists an assignment A such that for each s ∈ S, |A ∩ ({s} × Γ (s))| ≥ (1 − ε)d.
The idea is to use Hall’s theorem (1− ε)d times by repeatedly finding a perfect
matching and removing the nodes from Γ (S) in the matching.

Since G is an (n, d, ε)-expander we know that for each subset S′ ⊆ S it holds
that |Γ (S′)| ≥ (1− ε)d|S′|. Assume that we have i perfect matchings from S to
non-overlapping subsets of Γ (S) and denote by M the nodes from Γ (S) in the
matchings. For each subset S′ ⊆ S it holds that |Γ (S′)\M | ≥ ((1 − ε)d− i)|S′|.
If (1 − ε)d − i ≥ 1 then the condition in Hall’s theorem holds for the graph
Gi = (S, (Γ (S)\M), E′\Ei), where Ei is the set of edges incident to nodes in
M , and there exists a perfect matching in Gi. From this it follows that at least
(1 − ε)d non-overlapping (in Γ (S)) perfect matchings can be found in G′. The
edges in the matchings define a (1− ε)-balanced assignment. 2

3.2 Construction

We store the set S as follows:

1. Write ⊥ in all entries not in Γ (S).
2. Find the set S̄ of ε-ghosts for S.
3. Find a (1− ε)-balanced assignment for the set S ∪ S̄.
4. For x ∈ S write x in entries assigned to x.

For x ∈ S̄ write ¬x in entries assigned to x in Γ (S).

By Lemma 8 the set S̄ found in step 2 contains at most n keys, and by Lemma 10
it is possible to carry out step 3. Together with the results on expanders in
Section 2, this concludes the proof of Theorem 1.

We note that step 2 takes time Ω(|U\S|) if we have only oracle access to Γ .
When the graph has some structure it is sometimes possible to do much better.
Ta-Shma shows in [14] that this step can be performed for his class of graphs in
time polynomial in the size of the right vertex set, i.e., polynomial in the space
usage. All other steps are clearly also polynomial time in the size of the array.

In the dynamic setting, covered in Section 4, we will take an entirely different
approach to ghosts, namely, we care about them only if we see them. We then
argue that the time spent looking for a particular ghost before it is detected is
not too large, and that there will not be too many different ghosts.

4 Dynamic Updates

In this section we show how to implement efficient dynamic insertions and dele-
tions of keys in our dictionary. We will use a slightly stronger expander graph



than in the static case, namely a (4n′, d, ε/3)-expander where n′ is an upper
bound on the size of the set that can be handled. The parameter n′ is assumed
to be known to the query algorithm. Note that n′ can be kept in the range,
say, n to 2n at no asymptotic cost, using standard global rebuilding techniques.
Our dynamic dictionary essentially maintains the static data structure described
in the previous section. Additionally, we maintain the following auxiliary data
structures:

– A priority queue with all keys in S plus some set S̄ of keys that appear
negated in T . Each key has as priority the size of its assignment, which is
always at least (1 − ε)d.

– Each entry T [v] in T is augmented with
• A pointer Tp[v] which, if entry v is assigned to a key, points to that key

in the priority queue.
• A counter Tc[v] that at any time stores the number of keys in S that

have v as a neighbor.

Since all keys in the priority queue are assigned (1 − ε)d entries in T , the per-
formance of the lookup procedure is the desired one, except when searching for
ε-ghosts not in S̄. We will discuss this in more detail later.

4.1 Performing Updates

We first note that it is easy to maintain the data structure during deletions. All
that is needed when deleting x ∈ S is decreasing the counters Tc[v], v ∈ Γ (x),
and replacing x with ¬x or ⊥ (the latter if the counter reaches 0). Finally,
x should be removed from the priority queue. We use a simple priority queue
that requires space O(d + n), supports insert in O(d) time, and increasekey,
decreasekey, findmin and delete in O(1) time. The total time for a deletion
in our dictionary is O(d).

When doing insertions we have to worry about maintaining a (1−ε)-balanced
assignment. The idea of our insertion algorithm is to assign all neighbors to the
key being inserted. In case this makes the assignment of other keys too small
(easily seen using the priority queue), we repeat assigning all neighbors to them,
and so forth. Every time an entry in T is reassigned to a new key, the priority of
the old and new key are adjusted in the priority queue. The time for an insertion
is O(d), if one does not count the associated cost of maintaining assignments of
other keys. The analysis in Section 4.2 will bound this cost. Note that a priori
it is not even clear whether the insertion procedure terminates.

A final aspect that we have to deal with is ghosts. Ideally we would like S̄
to be at all times the current set of ε-ghosts for S, such that a (1− ε)-balanced
assignment was maintained for all ghosts. However, this leaves us with the hard
problem of finding new ghosts as they appear. We circumvent this problem by
only including keys in S̄ if they are selected for examination and found to be
ε-ghosts. A key is selected for examination if a lookup of that key takes more
than log1/ε d iterations. The time spent on examinations and on lookups of a
ghost before it is found, is bounded in the next section.



The sequence of operations is divided up into stages, where each stage (except
possibly the last) contains n′ insert operations. After the last insertion in a stage,
all keys in S̄ that are no longer ε-ghosts are deleted. This is done by going through
all keys in the priority queue. Keys of S̄ with at least (1−ε)d neighbors containing
⊥ are removed from the priority queue. Hence, when a new stage starts, S̄ will
only contain ε-ghosts.

4.2 Analysis

We now sketch the analysis of our dynamic dictionary. First, the total work
spent doing assignments and reassignments is analyzed. Recall that the algorithm
maintains a (1− ε)-balanced assignment for the set S ∪ S̄ of keys in the priority
queue. Keys enter the priority queue when they are inserted in S, and they may
enter it when they are ε-ghosts for the current set. It clearly suffices to bound
the total work in connection with insertions in the priority queue, as the total
work for deletions cannot be larger than this. We will first show a bound on the
number of keys in S̄.

Lemma 12. The number of keys in the set S̄ never exceeds 2n′.

Proof. Let S be the set stored at the beginning of a stage. S̄ only contains ε-
ghosts for S at this point. Let S′ denote the keys inserted during the stage. New
keys inserted into S̄ have to be ε-ghosts for S ∪ S′. According to Lemma 8, the
fact that |S ∪ S′| ≤ 2n′ implies that there are at most 2n′ ε-ghosts for S ∪ S′

(including the ε-ghosts for S). Thus, the number of keys in S̄ during any stage
is at most 2n′. 2

It follows from the lemma that the number of insertions in the priority queue
is bounded by 3 times the number of insertions performed in the dictionary. The
remainder of our analysis of the number of reassignments has two parts: We first
show that our algorithm performs a number of reassignments (in connection with
insertions) that is within a constant factor of any scheme maintaining a (1−ε/3)-
balanced assignment. The scheme we compare ourselves to may be off-line, i.e.,
know the sequence of operations in advance. Secondly, we give an off-line strategy
for maintaining a (1 − ε/3)-balanced assignment using O(d) reassignments per
update. This proof strategy was previously used for an assignment problem by
Brodal and Fagerberg [3].

In the following lemmas, the set M is the set for which a balanced assignment
is maintained, and the insert and delete operations are insertions and deletions
in this set. In our data structure M corresponds to S ∪ S̄.

Lemma 13. Let G = (U, V, E) be a d-regular bipartite graph. Suppose O is a
sequence of insert and delete operations on a dynamic set M ⊆ U . Let B be an
algorithm that maintains a (1− ε

3 )-balanced assignment for M , and let C be our
“assign all” scheme for maintaining a (1 − ε)-balanced assignment for M . If B
makes at most k reassignments during O, then C assigns all neighbors to a key
at most 3

ε (k/d + |M |start) times, where |M |start is the initial size of M .



Proof. To show the lemma we will argue that the assignment of C, denoted
AC , will become significantly “less different” from the assignment of B, denoted
AB, each time C assigns all neighbors of a key to that key. At the beginning
|AB\AC | ≤ d|M |start, since |AB | ≤ d|M |start. Each of the k reassignments B
performs causes |AB\AC | to increase by at most one. This means that the reas-
signments made by C during O can decrease |AB\AC | by at most k + d|M |start
in total.

Each time C assigns all entries in Γ (x) to a key x, at least εd reassignments
are done, since the assignment for x had size less than (1− ε)d before the reas-
signment. At this point at least (1− ε

3 )d pairs (x, e) are included in AB, i.e., at
most ε

3d of the neighbors of x are not assigned to x in AB . This means that at
least 2ε

3 d of the reassignments made by C decrease |AB\AC |, while at most ε
3d

reassignments may increase |AB\AC |. In total, |AB\AC | is decreased by at least
ε
3d when C assigns all neighbors to a key. The lemma now follows, as |AB\AC |
can decrease by ε

3d at most (k + d|M |start)/( ε
3d) times. 2

Lemma 14. Let G = (U, V, E) be a (4n′, d, ε/3)-expander. There exists an off-
line algorithm maintaining a (1− ε

3 )-balanced assignment for a dynamic set M ⊆
U , during a stage of 3n′ insertions, by performing at most 4dn′ reassignments,
where |M | ≤ n′ at the beginning of the stage.

Proof. Let M ′ be the set of 3n′ keys to insert. Define M̃ = M ∪ M ′; we have
|M̃ | ≤ 4n′. Let AM̃ be a (1− ε

3 )-balanced assignment for M̃ (shown to exist in
Lemma 10).

The off-line algorithm knows the set M ′ of keys to insert from the start, and
does the following. First, it assigns neighbors to the keys in M according to the
assignment AM̃ , which requires at most dn′ reassignments. Secondly, for each
insertion of a key x ∈ M ′, it assigns neighbors to x according to AM̃ , which
requires at most d reassignments. This will not cause any key already in the set
to lose an assigned neighbor, hence no further reassignments are needed to keep
the assignment (1− ε

3 )-balanced. It follows that he total number of reassignments
during the 3n′ insertions is at most 4dn′, proving the lemma. 2

The above two lemmas show that in a sequence of a updates to the dictionary
there are O(a) insertions in the priority queue, each of which gives rise to O(d)
reassignments in a certain off-line algorithm, meaning that our algorithm uses
O(ad) time for maintaining a (1 − ε)-balanced assignment for the set S ∪ S̄ in
the priority queue.

We now turn to analyzing the work done in the lookup procedure. First
we will bound the number of iterations in all searches for keys that are not
undetected ε-ghosts. Each iteration has probability at least 1− ε of succeeding,
independently of all other events, so we can bound the probability of many
iterations using Chernoff bounds. In particular, the probability that the total
number of iterations used in the b searches exceeds 2

1−εb + t is less than e−
1−ε
4 t.

When searching for a key that is not an undetected ε-ghost, the probability
of selecting it for examination is bounded from above by 1/d. In particular,



by Chernoff bounds we get that, for k > 0, the total number of examinations
during all b lookups is at most b/d + k with probability 1 − ( e

1+kd/b )b/d+k. For
k = (2e − 1)b/d + t/d we get that the probability of more than 2eb/d + t/d
examinations is bounded by 2−t/d. Each examination costs time O(d), so the
probability of spending O(b + t) time on such examinations is at least 1− 2−t/d.

We now bound the work spent on finding ε-ghosts. Recall that an ε-ghost
is detected if it is looked up, and the number of iterations used by the lookup
procedure exceeds log1/ε d. Since we have an ε-ghost, the probability that a
single lookup selects the ghost for examination is at least εlog1/ε d−1 = Ω(1/d).
We define d′ = O(d) by 1/d′ = εlog1/ε d−1. Recall that there are at most 2n′

ε-ghosts in a stage, and hence at most 2a in total. We bound the probability
that more than 4ad′ +k lookups are made on undetected ε-ghosts, for k > 0. By
Chernoff bounds the probability is at most e−k/4d′ . Each lookup costs O(log d)
time, so the probability of using time O(ad log d + t) is at least 1− e−t/4d′ log d.

In summary, we have bounded the time spent on four different tasks in our
dictionary:

– The time spent looking up keys that are not undetected ε-ghosts is O(b + t)
with probability 1− 2−Ω(t).

– The time spent examining keys that are not undetected ε-ghosts is O(b + t)
with probability 1− 2−Ω(t/d).

– The time spent looking up ε-ghosts before they are detected is O(ad log d+t)
with probability 1− 2−Ω(t/d log d).

– The time spent assigning, reassigning and doing bookkeeping is O(ad).

Using the above with the first expander of Corollary 5, having degree d =
O(log 2u

n′ ), we get the performance bound stated in Theorem 2. Using the con-
stant degree expander of Corollary 5 we get a data structure with constant time
updates. This can also be achieved in this space with a trie, but a trie would
use around 1/α word probes for lookups of keys in the set, rather than close to
1 word probe, expected.

5 Conclusion and Open Problems

In this paper we studied dictionaries for which a single word probe with good
probability suffices to retrieve any given key with associated information. The
main open problem we leave is whether the space usage of our dictionary is the
best possible for one-probe search.

It is known that three word probes are necessary and sufficient in the worst
case for lookups in dictionaries, even when using superlinear space. An obvious
open question is how well one can do using two word probes and a randomized
lookup procedure. Can the space utilization be substantially improved? Another
point is that we bypass Yao’s lower bound by using space dependent on u. An
interesting question is: How large a dependence on u is necessary to get around
Yao’s lower bound. Will space n log∗ u do, for example?

Acknowledgment. We thank Thore Husfeldt for helpful comments.



References

[1] Arne Andersson and Mikkel Thorup. Tight(er) worst-case bounds on dynamic
searching and priority queues. In Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing (STOC ’00), pages 335–342. ACM Press, 2000.

[2] Paul Beame and Faith Fich. Optimal bounds for the predecessor problem. In
Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC
’99), pages 295–304. ACM Press, 1999.

[3] Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representations of sparse
graphs. In Proceedings of the 6th International Workshop on Algorithms and Data
Structures (WADS ’99), volume 1663 of Lecture Notes in Computer Science, pages
342–351. Springer-Verlag, 1999.

[4] Harry Buhrman, Peter Bro Miltersen, Jaikumar Radhakrishnan, and
S. Venkatesh. Are bitvectors optimal? In Proceedings of the 32nd Annual
ACM Symposium on Theory of Computing (STOC ’00), pages 449–458. ACM
Press, 2000.

[5] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class
of hash functions and dynamic hashing in real time. In Proceedings of the 17th In-
ternational Colloquium on Automata, Languages and Programming (ICALP ’90),
volume 443 of Lecture Notes in Computer Science, pages 6–19. Springer-Verlag,
1990.

[6] Amos Fiat and Moni Naor. Implicit O(1) probe search. SIAM J. Comput.,
22(1):1–10, 1993.

[7] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table
with O(1) worst case access time. J. Assoc. Comput. Mach., 31(3):538–544, 1984.

[8] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic
bound with fusion trees. J. Comput. System Sci., 47:424–436, 1993.

[9] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic dictio-
naries. J. Algorithms, 41(1):69–85, 2001.

[10] Philip Hall. On representatives of subsets. J. London Math. Soc., 10:26–30, 1935.
[11] J. Ian Munro and Hendra Suwanda. Implicit data structures for fast search and

update. J. Comput. System Sci., 21(2):236–250, 1980.
[12] Rasmus Pagh. A trade-off for worst-case efficient dictionaries. Nordic J. Comput.,

7(3):151–163, 2000.
[13] Rasmus Pagh. On the Cell Probe Complexity of Membership and Perfect Hashing.

In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC ’01), pages 425–432. ACM Press, 2001.

[14] Amnon Ta-Shma. Storing information with extractors. To appear in Information
Processing Letters.

[15] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Loss-less con-
densers, unbalanced expanders, and extractors. In Proceedings of the 33rd Annual
ACM Symposium on Theory of Computing (STOC ’01), pages 143–152. ACM
Press, 2001.

[16] Andrew C.-C. Yao. Should tables be sorted? J. Assoc. Comput. Mach., 28(3):615–
628, 1981.


