
Database Tuning, Spring 2009 1

Temporal databases

Rasmus Pagh

Reading: [Arge01, sec. 1+ “persistent B-trees”/sec. 2.1]
Slides on persistent B-trees by Lars Arge.

Database Tuning, Spring 2009

Course evaluation

•  It is my plan to do a substantial
revision of DBT next year.

• Please use the course evaluation to
give your input to this process:
– What parts of the lectures/project worked

well (should be kept)?
– What parts worked less well?
– What did you miss?

• Your opinion is appreciated!
Deadline Friday April 17.

2

Database Tuning, Spring 2009

Today

• Temporal data, what and how?
•  Indexing temporal data.

•  Independent part (afternoon):
Guest lecture by Philippe Bonnet on
flash-based storage technology.

3

Database Tuning, Spring 2009

What is a temporal database?

• Database with a notion of ”time”.
• Several possible notions:

– Valid time
– Transaction time

• Typically, ”time” is used in a special
way in queries:
– Example: How many employees did we

have on April 1, 2008?
• Today, we focus on transaction time.

– Essentially want to be able to access all
previous versions of the database.

4

Database Tuning, Spring 2009

Timestamping tuples

• Simple idea: Extend each relation
schema with two attributes that encode
a time interval:
– Tst (start time/insertion time)
– Tet (end time/deletion time). Tet of current

tuples have special value uc (think ∞).
• A query ”for time t” should include the

extra condition Tst<=t AND t<=Tet on
each relation.

•  Important that primary keys do not
change – want to be able to relate
entities over time.

5

Database Tuning, Spring 2009

TSQL2 temporal extensions

• Gives more convenient ways of
expressing temporal conditions, e.g.
join conditions as ”the tuples existed at
the same time”. (SQL alternative?)

• Gives operations on time intervals
(union, intersection,…).

• Ways of ”aggregating” time intervals,
e.g., finding time intervals not covered
by a set of intervals.

• Today, we do not go further into the
language aspects of temporal DBs.

6

Database Tuning, Spring 2009

Maintaining time stamps

• New tuples are inserted with current
time (transaction time) as Tst.

• Deletions are not performed – instead
Tet is set to the current time.

• Changes to tuples are conceptually
done by deleting the old version and
inserting the new one.
– Can be wasteful in terms of space. A

possibility is to split each relation into many
relations with one attribute each in addition
to the primary key (”temporal normal
form”).

7

Database Tuning, Spring 2009

Problem session

• Consider how B-tree indexes might be
used to select tuples that satisfy
Tst<=t AND t<=Tet.

• Argue that in general, B-trees will not
allow us to find the matching tuples
efficiently.

8

t

Database Tuning, Spring 2009

Next: Persistent B-trees

• Multiversion B-trees (aka. partially
persistent B-trees) is an efficient index
for temporal data.

• Assumption: ”Transaction time” is used,
i.e., timestamps may only be set to the
current time.

• Warm-up: Persistent linked lists.
(Board.)

9

Database Tuning, Spring 2009

Persistent B-tree

• Easy way to make a B-tree persistent
– Copy structure at each operation
– Maintain “version-access” structure (B-tree)

•  O(logBN+T/B) I/O query, any version
– O(N/B) I/O update time
– O(N2/B) space

10

i i+2 i+1

update

i+3 i i+2 i+1

Database Tuning, Spring 2009

Persistent B-trees, better way

• Next idea: Instead of copying the whole
tree for each update, copy just the
nodes that are ”affected”, and re-use
the rest.

• Affected nodes:
– Updated nodes.
– Nodes on the path to an updated node

(specifically, we get a new root at each
time instance).

• Now update time is O(logBN)
• Space is O(N logBN) blocks

11

Persistent B-tree
•  Idea: Elements (in internal and leaf nodes) are augmented with

“existence interval” and stored in one structure

•  Persistent B-tree with parameter B:
– Directed acyclic graph

* Nodes contain elements augmented with existence interval
* At any time t, nodes with elements live at time t form B-tree

with leaf and branching parameter B (i.e., each node/leaf has
at least B/4 and at most B children/keys in them)

– B-tree with leaf and branching parameter b on “root nodes”.
⇓ Query at any time t in I/Os

12

Persistent B-tree: Updates
• Updates performed essentially as in a B-tree

•  To obtain linear space we maintain new-node invariant:
– New node contains between and live elements and no

dead elements
– Intuition: Ensure that many update operations take place before

the node is replaced.

13

Persistent B-tree Insert
•  Search for relevant leaf u and insert new element
•  If u contains B+1 elements: Block overflow

– Version split:
 Mark u dead and create new node u’ with x live elements
– If : Strong overflow
– If : Strong underflow
– If then recursively update parent(u):
 Delete (persistently) reference to u and insert reference to u’

14

Persistent B-tree Insert
•  Strong overflow ()

– Split u into u’ and u’’ with elements each ()
– Recursively update parent(u):
 Delete reference to u and insert reference to v’ and v’’

•  Strong underflow ()
– Merge x elements with y live elements obtained by version split on

sibling ()
– If then (strong overflow) perform split into nodes

with (x+y)/2 elements each ()
– Recursively update parent(u): Delete two insert one/two references

15

Persistent B-tree Delete
•  Search for relevant leaf u and mark element dead
•  If u contains live elements: Block underflow

– Version split:
 Mark u dead and create new node u’ with x live elements
– Strong underflow ():
 Merge (version split) and possibly split (strong overflow)
– Recursively update parent(u):
 Delete two references insert one or two references

16

Persistent B-tree

17

Insert Delete
done

Block overflow Block underflow

done

Version split Version split

Strong overflow Strong underflow

Merge Split

done

done

Strong overflow

Split

done

-1,+1

-1,+2

-2,+2

-2,+1

0,0

Persistent B-tree Analysis
• Update:

– Search and “rebalance” on one root-leaf path
•  Space: O(N/B)

– At least updates in leaf in existence interval
– When leaf u dies

* At most two other nodes are created
* At most one block over/underflow one level up (in parent(u))

⇓
– During N updates we create:

*  leaves
*  nodes i levels up

⇒ blocks

18

Summary/Conclusion: Persistent B-tree
•  Persistent B-tree

– Update current version
– Query all versions

•  Efficient implementation obtained using existence intervals
– Standard technique

⇓
• During N operations

– O(N/B) space
–  update
–  query

19

Database Tuning, Spring 2009

Valid time
•  Persistent B-trees critically use that

timestamps can only be set to “now”.
•  To index valid time, we may use a solution

to the “interval management” problem:
– Index N intervals such that a stabbing query at

time x and updating the set of intervals is
efficient.

•  Theoretically optimal solution: [Arge01, sec. 4]
– Note: Cannot search in stabbed intervals.

20

x

Database Tuning, Spring 2009

Bi-temporal databases

• The two notions of time co-exist.
• Possible to make queries that involve

both time dimensions.
• A possible indexing approach is to use

multi-dimensional indexes such as R-
trees.

21

Database Tuning, Spring 2009

Exercise

• Suppose we have access to persistent
B-trees and standard B-trees.

• Consider how to make efficient indexes
for the following queries: Report the
tuples that:
a) were inserted some time after time t.
b) existed at time t.
c)  existed at some point in [t1;t2].
d) existed in the whole time interval [t1;t2].

• Extra: Consider the effect of an
additional range condition, e.g. a>10.

22

