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Today 

• Spatial databases 
• Multi-dimensional indexing: 

– Grid files 
– kD-trees 
– R-trees 
– Range trees 
– Space-filling curves 

• Revisiting buffered B-trees. 
• About course evaluation, exam. 

2 



Database Tuning, Spring 2008 

Spatial databases 

Examples: 
• Geographic Information Systems (GIS) 
• Computer-Aided Design (CAD) 
• Multi-media databases (feature 

vectors) 
• Traffic monitoring 

More generally, spatial/multidimensional 
indexing techniques may be relevant to 
all queries that contain a range or point 
condition on more than one attribute. 
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Spatial data 

Two main types: 
• Point data (GIS, feature vectors, OLAP) 
• Region data: Objects have some spatial 

extent, e.g. polygons. 

• We will focus on point data, but some 
of the techniques we will talk about 
also work for region data. 

• We will talk mostly about 2D, but all 
ideas extend (with some cost) to higher 
dimensions. 
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Spatial queries 

Examples: 
• Orthogonal range queries: 

– Select all points with coordinates in given 
ranges. 

• Nearest neighbor queries: 
– Find the nearest point to a given query 

point. 

• Spatial join: 
– Join with spatial condition, e.g. ”are closer 

than 1 km”. Not discussed today. 
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Grid files, in a picture 
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Grid file properties 

• Simple implementation – reduction to 
clustered index on cell ID. 
– Especially when the grid is uniform. 

• Weak point: The number of points in a 
cell may vary a lot when points are not 
uniformly distributed. 
– Sometimes need 1 I/O to retrieve few 

points. 
– Sometimes need many I/Os to retrieve the 

points in a single cell. 
• Refinements: kd-trees (next), space-

filling curves (later). 
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kd-trees 

• Generalization of ordinary search tree. 
– External memory version sometimes called 

kdB-tree. 

• An internal node splits the data along 
some dimension. 
– In 2D, the splitting alternates between 

horisontal and vertical. 

• Similar to Quad-trees, implemented in 
Oracle. 
– Quad-trees split on two dimensions at each 

internal node. 
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kd-tree in a picture 
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kd-tree properties 

• Simple generalization of search trees. 
• Can adapt to different densities in 

various regions of the space. 
• Efficient external memory variant. 

• Weak point: Very rectangular queries 
may take long, and return only few 
points. 
– A 2D query on N points may visit up to N1/2 

leaves. 

10 



Database Tuning, Spring 2008 

R-trees 

• Another generalization of B-trees. 
• An internal node splits the points (or 

regions) into a number of rectangles. 
– A rectangle is a ”multidimensional interval”. 
– Rectangles may overlap. 

• Balancing conditions, and how balance 
is maintained, is similar to B-trees. 
– Especially, depth is low. 
– However, searches may need to explore 

several children of an internal node, so 
search time can be larger. 
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R-tree example 
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R-tree example 
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R-tree properties 

• Theoretically, not known to be stronger 
than kd-trees. 
– Except in special cases. 

• The most widely implemented spatial 
tree index. 
– Flexible 
– Performs well in low dimensions 
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Exercise 

• Hand-out: ”R-trees for triangles”. 
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Range trees 

• We next consider range trees, which 
provide fast multi-dimensional range 
queries at the cost of higher space 
usage. 
– Performance acceptable only in low 

dimensions. 

•  In the lecture, we will see a simpler 
variant that allow range trees to be 
implemented using a collection of 
standard B-trees!  
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Ranges vs prefixes 

•  Covering ranges by prefixes: 
– Suppose a and b are w-bit integers. 
– Any range [a;b] can be split into at most 2w 

intervals where each interval consists of all 
integers with a particular prefix. 

• Often the intervals used in OLAP queries 
naturally correspond to prefixes. E.g. 
– ”location=Denmark” 
– ”location=Denmark:Copenhagen” 
– ”location=Denmark:Copenhagen:Amager” 

•  Thus: Enough to solve the case where a 
prefix is specified in each dimension.  
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Storing points redundantly 

• Basic idea: 
– Store each point several times, using all 

different combinations of prefixes as key. 

• Example: 
– p=(DK:CPH:Amgr, Shirts:White). 
– Store according to the 12 keys: 
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DK:CPH:Amgr; 
Shirts:White 

DK:CPH:Amgr; 
Shirts 

DK:CPH:Amgr; 
* 

DK:CPH; 
Shirts:White 

DK:CPH; 
Shirts 

DK:CPH; 
* 

DK;Shirts:White DK;Shirts DK;* 

*;Shirts:White *;Shirts *;* 
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Querying 

• Prefix querying is very easy: 
Simply use the prefixes as key in some 
index structure (e.g. a B-tree). 
– Time efficient! 
– But general range queries may require a 

relatively large number of prefix queries. 

• Space analysis: 
– If there are w possible prefixes in each of d 

dimensions, each point is stored wd times. 
– Space is factor wd from optimal. May be 

fine when d is small.  
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Problem session 

• We revisit the setting from before, 
where we consider points of the form 
(Country:City:Site, ItemType:Color). 
– 4 possible location prefixes, 3 item prefixes 
– Basic idea says 12 keys should be used 

• Come up with a better way of storing 
the points: 
– With same query efficiency. 
– Only 3 keys per point 
– Hint: Composite keys and range queries. 
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Range trees wrap-up 

• Space overhead may be reduced to wd-1 
using this idea. 

•  It is even known how to reduce the 
space overhead to wd-2, but then the 
scheme is not external memory 
efficient. 

• Summary: 
– Range trees are mainly applicable where a 

considerable space overhead is acceptable. 
– Best for prefix queries, but also reliable 

performance for range queries. Especially 
good in 2D (and 3D).    
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Space-filling curves 
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Idea: Create 1-to-1 correspondence between points in 2D 
and 1D that ”preserves locality”. 
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Z-ordering 
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•  Simplest space-filling curve 
•  Consider point given by 

binary coordinates: 
(00101110, 01101011) 

•  Mapped to the number 
formed by interleaving: 
0001110011101101. 

•  Mapping a 2D range query: 
Determine the smallest 
interval containing range. 
•  Z-order: Top-left and 

bottom right corners 
determine the extremes. 
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Weak points of space-filling curves 

• Some points that are close in 2D will be 
far apart when mapping to 1D. 

• Chance of running into this 
problem can be minimized by 
adding a random shift to all 
coordinates. 
– Alternatively, consider a number 

of space-filling curves slightly 
shifted along both coordinates. 
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Approximate nearest neigbor 

• Exact near neighbor queries are 
difficult, especially 
– when data changes, and 
– there may be many point at almost minimal 

distance to the query point. 

• Often: Enough to find a neighbor that is 
not much further away than the 
nearest neighbor. 
– Allows much more efficient solutions. 
– The ratio between distances can be 

guaranteed. 
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Approximate NN picture 
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Approximate NN using Z-order 

•  If the coordinates of two points differ by d1 
and d2 along the two dimensions, we 
expect the least significant 
2log(max(d1,d2)) bits of the corresponding 
1D values to differ. 
– By using several curves, we can make this hold 

for at least one curve (for any point pair). 
– The largest difference in any dimension is what 

counts (L∞ norm). 

•  Candidates for being near neighbors of a 
query point p are simply the predecessor 
and successor of p in the curve order.   
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Rotations 

• To make L∞ norm 
close to the 
normal euclidian 
distance, we may 
consider several 
curves that are 
rotations of the 
Z-curve.  
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Spatial indexing summary 

• Many different indexes, with different 
strengths and weaknesses. 

• Distinguishing features include: 
– Linear or super-linear space? 
– Good for any point distribution? 
– Support for queries: Range q.,near 

neighbor q., stabbing q., intersection q.,…? 
– Exact or approximate results? 
– Fast updates, or meant for static use? 

• Most common in practice: R-trees, kd/
quad-trees, (space-filling curves).  
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Buffered B-trees revisited 
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Course evaluation 

• Your feedback is appreciated! 
– Help identify parts of the course that should 

be strengthened. 
– Curriculum is open for change – what 

should (not) be in? 
– Feedback last year made your life doing the 

project a lot easier… Pay back! 

• Form and contents of lectures: 
– Problem sessions? 
– Exercises?  

31 



Database Tuning, Spring 2008 

Exams 

• Exams are on June 25 and/or 26. 
– Schedule out in a couple of weeks. 
– Oral without preparation; individual. 
– No ”presentation”. 
– We will ask questions, taking the project 

report as a starting point. 
– Main focus on skills, not knowledge (see 

course goals). 
– But of course, tuning skills often require 

knowledge. 
• Q&A session before exam: 
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