
Database Tuning, Spring 2008 1

Lecture 11:
Spatial databases

Rasmus Pagh

Reading: RG 28, blog post, [BKOS00, sec. 5.3]

Database Tuning, Spring 2008

Today

• Spatial databases
• Multi-dimensional indexing:

– Grid files
– kD-trees
– R-trees
– Range trees
– Space-filling curves

• Revisiting buffered B-trees.
• About course evaluation, exam.

2

Database Tuning, Spring 2008

Spatial databases

Examples:
• Geographic Information Systems (GIS)
• Computer-Aided Design (CAD)
• Multi-media databases (feature

vectors)
• Traffic monitoring

More generally, spatial/multidimensional
indexing techniques may be relevant to
all queries that contain a range or point
condition on more than one attribute.

3

Database Tuning, Spring 2008

Spatial data

Two main types:
• Point data (GIS, feature vectors, OLAP)
• Region data: Objects have some spatial

extent, e.g. polygons.

• We will focus on point data, but some
of the techniques we will talk about
also work for region data.

• We will talk mostly about 2D, but all
ideas extend (with some cost) to higher
dimensions.

4

Database Tuning, Spring 2008

Spatial queries

Examples:
• Orthogonal range queries:

– Select all points with coordinates in given
ranges.

• Nearest neighbor queries:
– Find the nearest point to a given query

point.

• Spatial join:
– Join with spatial condition, e.g. ”are closer

than 1 km”. Not discussed today.

5

Database Tuning, Spring 2008

Grid files, in a picture

6

Database Tuning, Spring 2008

Grid file properties

• Simple implementation – reduction to
clustered index on cell ID.
– Especially when the grid is uniform.

• Weak point: The number of points in a
cell may vary a lot when points are not
uniformly distributed.
– Sometimes need 1 I/O to retrieve few

points.
– Sometimes need many I/Os to retrieve the

points in a single cell.
• Refinements: kd-trees (next), space-

filling curves (later).

7

Database Tuning, Spring 2008

kd-trees

• Generalization of ordinary search tree.
– External memory version sometimes called

kdB-tree.

• An internal node splits the data along
some dimension.
– In 2D, the splitting alternates between

horisontal and vertical.

• Similar to Quad-trees, implemented in
Oracle.
– Quad-trees split on two dimensions at each

internal node.

8

Database Tuning, Spring 2008

kd-tree in a picture

9

Database Tuning, Spring 2008

kd-tree properties

• Simple generalization of search trees.
• Can adapt to different densities in

various regions of the space.
• Efficient external memory variant.

• Weak point: Very rectangular queries
may take long, and return only few
points.
– A 2D query on N points may visit up to N1/2

leaves.

10

Database Tuning, Spring 2008

R-trees

• Another generalization of B-trees.
• An internal node splits the points (or

regions) into a number of rectangles.
– A rectangle is a ”multidimensional interval”.
– Rectangles may overlap.

• Balancing conditions, and how balance
is maintained, is similar to B-trees.
– Especially, depth is low.
– However, searches may need to explore

several children of an internal node, so
search time can be larger.

11

Database Tuning, Spring 2008

R-tree example

12

R8
R9

R10

R11

R12

R17
R18

R19

R13

R14

R15

R16

R1

R2

R3

R4

R5

R6

R7

Leaf entry

Index entry

Spatial object
approximated by
bounding box R8

(slide by Ramakrishnan and Gehrke)

Database Tuning, Spring 2008

R-tree example

13

(slide by Ramakrishnan and Gehrke)

R1 R2

R3 R4 R5 R6 R7

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

Database Tuning, Spring 2008

R-tree properties

• Theoretically, not known to be stronger
than kd-trees.
– Except in special cases.

• The most widely implemented spatial
tree index.
– Flexible
– Performs well in low dimensions

14

Database Tuning, Spring 2008

Exercise

• Hand-out: ”R-trees for triangles”.

15

Database Tuning, Spring 2008

Range trees

• We next consider range trees, which
provide fast multi-dimensional range
queries at the cost of higher space
usage.
– Performance acceptable only in low

dimensions.

•  In the lecture, we will see a simpler
variant that allow range trees to be
implemented using a collection of
standard B-trees!

16

Database Tuning, Spring 2008

Ranges vs prefixes

•  Covering ranges by prefixes:
– Suppose a and b are w-bit integers.
– Any range [a;b] can be split into at most 2w

intervals where each interval consists of all
integers with a particular prefix.

• Often the intervals used in OLAP queries
naturally correspond to prefixes. E.g.
– ”location=Denmark”
– ”location=Denmark:Copenhagen”
– ”location=Denmark:Copenhagen:Amager”

•  Thus: Enough to solve the case where a
prefix is specified in each dimension.

17

Database Tuning, Spring 2008

Storing points redundantly

• Basic idea:
– Store each point several times, using all

different combinations of prefixes as key.

• Example:
– p=(DK:CPH:Amgr, Shirts:White).
– Store according to the 12 keys:

18

DK:CPH:Amgr;
Shirts:White

DK:CPH:Amgr;
Shirts

DK:CPH:Amgr;
*

DK:CPH;
Shirts:White

DK:CPH;
Shirts

DK:CPH;
*

DK;Shirts:White DK;Shirts DK;*

*;Shirts:White *;Shirts *;*

Database Tuning, Spring 2008

Querying

• Prefix querying is very easy:
Simply use the prefixes as key in some
index structure (e.g. a B-tree).
– Time efficient!
– But general range queries may require a

relatively large number of prefix queries.

• Space analysis:
– If there are w possible prefixes in each of d

dimensions, each point is stored wd times.
– Space is factor wd from optimal. May be

fine when d is small.

19

Database Tuning, Spring 2008

Problem session

• We revisit the setting from before,
where we consider points of the form
(Country:City:Site, ItemType:Color).
– 4 possible location prefixes, 3 item prefixes
– Basic idea says 12 keys should be used

• Come up with a better way of storing
the points:
– With same query efficiency.
– Only 3 keys per point
– Hint: Composite keys and range queries.

20

Database Tuning, Spring 2008

Range trees wrap-up

• Space overhead may be reduced to wd-1
using this idea.

•  It is even known how to reduce the
space overhead to wd-2, but then the
scheme is not external memory
efficient.

• Summary:
– Range trees are mainly applicable where a

considerable space overhead is acceptable.
– Best for prefix queries, but also reliable

performance for range queries. Especially
good in 2D (and 3D).

21

Database Tuning, Spring 2008

Space-filling curves

22

Idea: Create 1-to-1 correspondence between points in 2D
and 1D that ”preserves locality”.

Database Tuning, Spring 2008

Z-ordering

23

•  Simplest space-filling curve
•  Consider point given by

binary coordinates:
(00101110, 01101011)

•  Mapped to the number
formed by interleaving:
0001110011101101.

•  Mapping a 2D range query:
Determine the smallest
interval containing range.
•  Z-order: Top-left and

bottom right corners
determine the extremes.

Database Tuning, Spring 2008

Weak points of space-filling curves

• Some points that are close in 2D will be
far apart when mapping to 1D.

• Chance of running into this
problem can be minimized by
adding a random shift to all
coordinates.
– Alternatively, consider a number

of space-filling curves slightly
shifted along both coordinates.

24

Database Tuning, Spring 2008

Approximate nearest neigbor

• Exact near neighbor queries are
difficult, especially
– when data changes, and
– there may be many point at almost minimal

distance to the query point.

• Often: Enough to find a neighbor that is
not much further away than the
nearest neighbor.
– Allows much more efficient solutions.
– The ratio between distances can be

guaranteed.

25

Database Tuning, Spring 2008

Approximate NN picture

26

Database Tuning, Spring 2008

Approximate NN using Z-order

•  If the coordinates of two points differ by d1
and d2 along the two dimensions, we
expect the least significant
2log(max(d1,d2)) bits of the corresponding
1D values to differ.
– By using several curves, we can make this hold

for at least one curve (for any point pair).
– The largest difference in any dimension is what

counts (L∞ norm).

•  Candidates for being near neighbors of a
query point p are simply the predecessor
and successor of p in the curve order.

27

Database Tuning, Spring 2008

Rotations

• To make L∞ norm
close to the
normal euclidian
distance, we may
consider several
curves that are
rotations of the
Z-curve.

28

Database Tuning, Spring 2008

Spatial indexing summary

• Many different indexes, with different
strengths and weaknesses.

• Distinguishing features include:
– Linear or super-linear space?
– Good for any point distribution?
– Support for queries: Range q.,near

neighbor q., stabbing q., intersection q.,…?
– Exact or approximate results?
– Fast updates, or meant for static use?

• Most common in practice: R-trees, kd/
quad-trees, (space-filling curves).

29

Database Tuning, Spring 2008

Buffered B-trees revisited

30

 42

 22

11 33

 66

44 88

Database Tuning, Spring 2008

Course evaluation

• Your feedback is appreciated!
– Help identify parts of the course that should

be strengthened.
– Curriculum is open for change – what

should (not) be in?
– Feedback last year made your life doing the

project a lot easier… Pay back!

• Form and contents of lectures:
– Problem sessions?
– Exercises?

31

Database Tuning, Spring 2008

Exams

• Exams are on June 25 and/or 26.
– Schedule out in a couple of weeks.
– Oral without preparation; individual.
– No ”presentation”.
– We will ask questions, taking the project

report as a starting point.
– Main focus on skills, not knowledge (see

course goals).
– But of course, tuning skills often require

knowledge.
• Q&A session before exam:

32

