Lecture 3:
Hash indexing,
index selection

Rasmus Pagh

:é IT University of Copenhagen Database Tuning, Spring 2007 1



e Morning session: Hashing
— Static hashing, hash functions
— Extendible hashing
— Linear hashing
— Newer techniques:
Buffering, two-choice hashing
o Afternoon session: Index selection
— Factors relevant for choice of indexes
— Rules of thumb; examples and counterexamples

— Exercises

&5 1T University of Copenhagen



o At least three possibilities:
1) Record of key.
2) Key and pointer to record of key.

3) Key and list of pointers to the records
containing the key (for non-unique keys).

 For simplicity, we consider the case
where there is the same number of
keys (B) in every disk block.
— Case 1 with fixed length records.
— Case 2 with fixed length keys.

&5 1T University of Copenhagen



e Hash table:
— Array of N disk blocks. (Notation from RG.)
— Can access block i in 1 I/0O, for any i.
e Hash function h:
- Maps keys to {0,...,N-1}.
- Should be efficient to evaluate (0 I/0s).
— Idea: x is stored in block h(x).

e Problem:
— Dealing with overflows.
— Standard solution: Overflow chains.

&5 1T University of Copenhagen



e Consider the following claim from RG:

If we have N buckets, numbered 0 through N — 1, a hash
function h of the form h(value) = (axvalue+b) works well
in practice. (The bucket identified is h(value) mod N.)

e Donald Ummy uses this hash function
in an application, and finds out that it
performs terribly, no matter how the
constants a and b are chosen.

e What might have gone wrong?

&5 1T University of Copenhagen



Another approach (not mentioned in RG):

e Choose h at random from some set of
functions.

e This can make the hashing scheme
behave well regardless of the key set.

e E.g., "universal hashing" makes
chained hashing perform well (in theory
and practice).

e Details out of scope for this course...

&5 1T University of Copenhagen



e Notation:
— N keys inserted,
— Each block in the hash table can hold B keys.

e Suppose that we insert aN keys in the hash
table ("it is a fraction o full”, “load factor o).

e Assume h is truly random.

e Expected number of overflow blocks:
(1-a)2 - 22BN (proof omitted!)

e Good to have many keys in each bucket (an
advantage of secondary indexes).

&5 1T University of Copenhagen



o If B is sufficiently large compared to N,
all overflow blocks can be kept in
internal memory.

e Lookup in 1 I/O.
e Update in 2 I/Os.

&5 1T University of Copenhagen



Can have too many overflow chains if:
e The hash function does not distribute
the set of keys well ("skew”).
— Solution 1: Choose a new hash function.
— Solution 2?: Overflow in main memory.
e The number of keys in the dictionary
exceeds the capacity of the hash table.

— Solution: Rehash to a larger hash table.
— Better solution: ?

&5 1T University of Copenhagen



e For simplicity, assume N is a power of
2. Suppose h is a hash function that
has values of “many” (e.g. 64) bits.

e We can map a key x to {0,...,N-1} by
taking the log N least significant bits of
h(x).

e Suppose that the hash table has
become too small:

— Want to double the size of the hash table.
— Just consider one more bit of h(x).

&5 1T University of Copenhagen



e Suppose h(x)=0111001 (in binary)
and the hash table has size 16.

e Then x is stored in block number 1001
(binary).

o After doubling to size 32, x should be
stored in block 11001.

e Generally, all keys in block 1001 should
be moved to block 01001 or 11001.

e Conclusion: Can rehash by scanning
the table and split each block into two
blocks.

&5 1T University of Copenhagen



New key:
00100

10100
11000

00101

00110
11110

01011
10111

For simplicity we assume:
 No overflow chains
e h(X)=Xx

&> [T University of Copenhagen

11000

01011

10100
00100

00101

00110
11110

10111




e Find some possible disadvantages of
the doubling strategy. Consider:
— Space usage vs overflows
— System response time

e Next: Alternatives that address some
of the disadvantages of doubling.

&5 1T University of Copenhagen



10100
11000

00101

00110

11110 E>

01011
10111

"Virtual” blocks

e Merged with previous blocks
by considering one bit less
 Turned into physical blocks
as the hash table grows

11000

00110
11110

01011
10111

10100
00100

00101

&> [T University of Copenhagen

11000

01011

10100
00100

00101

00110
11110

10111




The good:

e Resizes hash table one block at a time:
Split a block or merge two blocks.

e Cost of resize: 3 I/0Os. Cheap!

The bad:

e Increasing size of hash table may not
eliminate any overflow chain.

e Uneven distribution of hash values; works
best for relatively low load factors, 50-80%.
(But variants of linear hashing improve this.)

e No worst-case guarantee on query time.

&5 1T University of Copenhagen



"Virtual”
hash table
- no
overflows

A

/

11000

10100
00100

00101

00110
11110

01011
10111

&5 1T University of Copenhagen

"Directory”
- mapping virtual
to physical

physical
hash table



e Virtual hash table has no overflows - may
need to increase in size.

e Physical hash table has no overflows.

e Virtual hash table is as small as possible -
may need to shrink.

o "Compression”: For any bit string s, if we
consider the virtual hash table blocks whose
index ends with s then either:

— These blocks contain more than B keys, or

— The corresponding entries in the directory all point
to the same block. (In other words, these blocks are
merged.)

&5 1T University of Copenhagen



e At most 2 I/Os for every lookup.

e Only 1 I/0O if directory fits in internal
memory.

e Space utilization in physical hash table
is 69% (expected).

e Size of directory is roughly 4N ¥/N
(expected) - this is much smaller than
the hash table if B is moderately large.

&5 1T University of Copenhagen



e Same trick as in buffered B-trees:
Don’t do updates right away, but put
them in a buffer.

0110 1000 | 0100 SVER G
1110 0101 |0111 — »
1111 1100 |1010 block

buffer

e Advantage: Several keys moved to the
overflow block at once.

e Disadvantage: Buffer takes space.

&5 1T University of Copenhagen



e Idea:
- Use two hash functions, hy; and h,.

— X is stored in either block h;(x) or h5(x),
use two I/0s for lookup.

- When inserting x, choose the least loaded
block among h; and h..

e Can be shown that overflow
probabilities are much smaller than
with one function, especially when B is
small.

o If two disks are available, the 2 I/0s
can be done in parallel.

&5 1T University of Copenhagen



Today’s lecture, part 2

e Index selection
— Factors relevant for choice of indexes
— Rules of thumb; examples and counterexamples

e EXxercises

& 1T University of Copenhagen Database Tuning, Spring 2007 21



e The workload (mix of operations to be
carried out by the DBMS) has a large
influence on what indexes should be
created in a database.

e Other factors are:
- the data in relations, and
- the query plans produced by the DBMS.

&5 1T University of Copenhagen



e Rules of thumb can be used to guide
thinking, and as a checklist.

e Are often valid in most cases, but there
are always important exceptions.

e Quote from SB:

The point of the example is that the tuner must
understand the reason for the rule

e You don't yet have the entire picture
(query optimization, concurrency), but
we can start reasoning about rules
anyway.

&5 1T University of Copenhagen



e Argument: Using an index on a
selective attribute will help reducing
the amount of data to consider.

e Example:

SELECT count(*) FROM R

WHERE a>'UXS’ AND b BETWEEN 100 AND 200
e Counterexamples:

— Full table scan may be faster than an index

— It may not be possible/best to apply an
index.

&5 1T University of Copenhagen



e Argument:
— Range and multipoint queries are faster.
— Usually sparse, uses less space.

e Counterexamples:

— May be slower on queries “"covered” by a
dense index.

— If there are many updates, the cost of
maintaining the clustering may be high.

— Clustering does not help for point queries.

— Can cluster according to several attributes
by duplicating the relation!

&5 1T University of Copenhagen



Rule of thumb 3:

Prefer a hash index over a B-tree if point
queries are more important than range queries

e Argument:

— Hash index uses fewer I/Os per operation
than a B-tree.

— Joins, especially, can create many point
queries.

e Counterexamples:

— If a real-time guarantee is needed, hashing
can be a bad choice.

— Might be best to have both a B-tree and a
hash index.

& 1T University of Copenhagen Database Tuning, Spring 2007 26



RG page 37/1:

Hash-based indexing techniques cannot
support range searches, unfortunately.

- But: they can be used to answer range
queries in O(1+Z/B) I/0Os, where Z is the
number of results.

. Theoretical result on external memory
(why?) - and out of scope for DBT.

&5 1T University of Copenhagen



e Comparison of B-trees and extendible
hashing.
— Case 1: Directory fits internal memory.
— Case 2: Directory on external memory.
— Case A: B=4, N=229,
— Case B: B=28, N=220,

e Consider cases 1A, 1B, 2A, 2B.

&5 1T University of Copenhagen



e Argument: The savings provided by an
index should be bigger than the cost.

e Counterexample:

— If updates come when the system has
excess capacity, we might be willing to
work harder to have indexes at the peaks.

o If buffered B-trees are used, the cost
per update of maintaining an index
may be rather low. Especially if binary

(1) trees are used.

&5 1T University of Copenhagen



Rule of thumb 5:

A non-clustering index helps when the
number of rows to retrieve is smaller than the
number of blocks in the relation.

e Argument:In this case it surely reduces
I/O cost.

e Counterexample:

— Even for a non-clustered index, the rows to
retrieve can sometimes be found in a small
fraction of the blocks (e.g. salary, clustered
on date of employment).

& 1T University of Copenhagen Database Tuning, Spring 2007 30



e Argument: Small tables can be kept in
internal memory, or read entirely in 1
or 2 I/0s.

e Counterexample:

— If the index is in main memory, it might
still give a speedup.

&5 1T University of Copenhagen



e Indexing is a complicated business!

e Understanding the various index types
and their performance characteristics,
as well as the characteristics of the
database at hand and its workload
allows informed indexing decisions.

e Rules of thumb can be used to guide
thinking.
e More complications to come!

&5 1T University of Copenhagen



e Default in Oracle is to store tuples in a
heap (think insertion order).

e Is clustered according to the primary
key, if “ORGANIZATION INDEX"” is added

after the schema when creating the
relation.

e To cluster according to a non-unique
attribute A, declare a composite
primary key (A,P), where P is a unique
key.

&5 1T University of Copenhagen



Hand-outs:
e ADBT exam, June 2005, problem 1.

e ADBT exam, June 2006, problem 1.

&> [T University of Copenhagen



