
Advanced Database Technology

IT University of Copenhagen

June 12, 2006

This examination assignment consists of 7 problems with a total of 17 subproblems.
The weight of each problem is stated. You have 4 hours to answer all subproblems. The
complete assignment consists of 7 numbered pages (including this page).

You must write your answer in English. Your sheets should be numbered, and contain
name, CPR number, and course code (ADBT). Write only on the front of the sheets, and
sort them before numbering so that the problems appear in sorted order.

GUW refers to Database Systems – The Complete Book by Hector Garcia-Molina, Jeff
Ullman, and Jennifer Widom, 2002.

All written aids are allowed / Alle skriftlige hjælpemidler er tilladt.

1



1 Representation of relations (20 %)

In this problem we consider a relation R(a,b), where a and b are integers (of type INT).
We let B > 1 denote the number of integers that fits in a disk block. Suppose that R
consists of N tuples, {(a1, b1), . . . , (aN , bN)}, sorted such that a1 < a2 < a3 < · · · < aN .
There are two natural ways of representing the relation on disk, ordered according to a:

Horizontal: a1, b1, a2, b2, . . . , aN , bN (this is what we mainly considered in the course).

Vertical: a1, a2, . . . , aN , b1, b2, . . . , bN .

Some DBMSs allow the user to specify that vertical order should be used (this is an
example of vertical partitioning).

a) How many I/Os are needed to read the K smallest values of a, i.e., a1, . . . , aK , in each
of the two representations? State your answers as functions of K and B (exact numbers,
no asymptotic notation).

b) How many I/Os are needed to read the K smallest values of b in each of the two rep-
resentations? State your answers as functions of K and B (exact numbers, no asymptotic
notation).

c) Assume that there in no index on R. How many I/Os are needed to find the tuple with
a particular value of a in each of the two representations? State the worst case number of
I/Os for the best algorithms you can think of (exact numbers, no asymptotic notation).

We now consider a third alternative representation, the multi-sorted representation.
Assume that the number of tuples in R is a perfect square, i.e., that

√
N is an integer. The

idea is to change the horizontal representation by splitting it into
√

N intervals of
√

N
tuples, and sorting each interval according to the value of b. An example instance with
N = 9 is the following (we mark tuples by parentheses and intervals by square brackets
for readability):

[(3, 2), (2, 3), (5, 5)], [(5, 4), (13, 9), (11, 10)], [(23, 1), (19, 6), (17, 14)]

d) Show that in the multi-sorted representation, it is possible to search for a particular
value of a, as well as a particular value of b, in O(

√
N log N) I/Os (without any index).

You should describe search algorithms achieving this I/O bound (or better). Can you
improve the representation, in terms of search time for particular values?

2



2 Query optimization (15 %)

Consider relations R(a,b) and S(a,c), where all attributes are of type integer. Assume
that both relations have N tuples and are much larger than the capacity of main memory.
The SQL query

SELECT R.a FROM R, S WHERE S.c > 10 AND R.a = S.a;

translates into the relational algebra expression

πR.a(σc>10(R ./ S)) .

a) Suggest an alternative, equivalent relational algebra expression that is likely to result
in a faster execution plan, and should never give a worse execution plan. Argue why this
is the case.

Next, consider the following query:

SELECT R.a

FROM R

WHERE NOT EXISTS (SELECT S.a FROM S WHERE S.c = 10);

Since the subquery is correlated, a DBMS may execute it for every tuple of R. An alternative
to the above query is the following, equivalent SQL statement:

(SELECT R.a FROM R) EXCEPT (SELECT S.a FROM S WHERE S.c = 10);

b) Compare the efficiency of the two SQL statements, assuming that the DBMS executes
the former in the näıve way (computing the subquery for every tuple of R), and uses no
indexes. State the asymptotic (big-O) complexities in terms of N and B, assuming that
all sorting steps and joins can be done using 2 passes.

3 Height of B-trees (15%)

The purpose of this problem is to show that the height of a B-tree is sensitive to the order
of insertion of keys into it. In the following, use the insertion algorithm described in GUW
(Section 13.3.5) for insertions into B-tree nodes.

a) Insert the keys 60, 50, 40, 30, 20, 10 (in that order) into an empty B-tree with n = 2
(i.e., at most two keys and three pointers can fit in a node). Show the result after inserting
all the 6 keys.

b) Construct a B-tree with n = 2 for the keys 60, 50, 40, 30, 20, 10 having the smallest
possible height.

3



c) What are the minimum and maximum heights of a B-tree with n = 2 and N keys?
Argue that there exist sequences of insertions and deletions that result in the minimum
and maximum height, respectively, for arbitrarily large values of N .

4 Choosing indexes (15%)

Suppose we are a given a large employee database of a firm that stores the name of each
employee together with the starting and ending dates of his employment. For the queries
of subproblems a), b) and c) below, describe how you would store the database and any
additional index structures to support the queries efficiently. You do not need to worry
about efficient updates. Also, state the I/O complexities of the queries, assuming the
database contains N records (each of constant size), and each block can hold at most B
records.

a) Consider the above questions for the queries of the form: “Given a particular date,
list all the employees of the firm on that date.”

b) Consider the above questions for the queries of the form: “Given an employee, list all
the employees who joined the firm during his employment period.”

Even if you did not answer the two previous subproblems, you may assume that answers
are known when answering the final subproblem:

c) Consider the above questions for the queries of the form: “Given an employee, list all
the employees who were working in the firm during some part of his employment period.”

5 Concurrency control (15 %)

In the course we have considered concurrency control mechanisms based on two-phase
locking (2PL). Transactions at lower isolation levels (e.g., read committed) may not use
2PL, but instead request and release locks before and after each statement.

a) Suppose that we have two concurrent transactions T1 and T2, where T1 uses 2PL, and
T2 is read-only and locks database elements only for the duration of single statements.
Argue that the result of running T1 and T2 (considering database updates as well as results
returned by transactions) may sometimes not be equivalent to a serial schedule.

Suppose that a DBMS implements full locking, meaning that all locks are obtained at
the beginning of the transaction, and released at the end of the transaction.

4



b) Again, suppose that we have two concurrent transactions T1 and T2. Now T1 uses full
locking, and T2 is again read-only and locks database elements only for the duration of
single statements. Argue that the result of running T1 and T2 is always equivalent to a
serial schedule.

6 Undo/Redo Logging (10 %)

Consider the following transaction log from the start of the run of a database system that
is using undo/redo logging with (nonquiescent) checkpointing for crash recovery:

1) <START T1>

2) <T1, X, 20, 10>

3) <T1, Y, 40, 0>

4) <START T2>

5) <T1, X, 50, 20>

6) <T2, Z, 30, 20>

7) <COMMIT T1>

8) <START T3>

9) <T3, U, 60, 30>

10) <T2, V, 50, 25>

11) <START CKPT (T2,T3)>

12) <T2, Z, 45, 30>

13) <COMMIT T2>

14) <START T4>

15) <T4, W, 80, 10>

16) <COMMIT T3>

17) <END CKPT>

18) <T4, W, 100, 80>

19) <COMMIT T4>

The log entries for database updates are in the format

〈Transaction id, Variable, New value, Old value〉

a) What is the value of the data items X, Y, Z, U, V, and W on disk after recovery:

1. if the system crashes just before line 13 is written to disk?

2. if the system crashes just before line 14 is written to disk?

3. if the system crashes just before line 19 is written to disk?

5



7 Text indexing (10 %)

a) Construct the suffix tree and suffix array for the string: PAPAYA

b) State one (or more) important advantage of suffix trees relative to suffix arrays, and
vice versa.

6


